Prediksi fisikokimia melon (Cucumis melo I.) secara non-destruktif dengan impuls akustik dan jaringan saraf tiruan

Avicenna Nur Kasih, Nafis Khuriyati, affan fajar falah

Abstract

Melon (Cucumis melo L.) is one of the favorite fruits in Indonesia. The relatively short harvest period and high price of melons make melons a superior business commodity. Quality testing of melon fruit is still widely done by relying on destructive testing, which damages the fruit. Therefore, a non-destructive testing approach is needed to predict the parameter values of the physicochemical properties of melon fruit non-destructively with acoustic impulse technology. This study aims to develop a model to predict the physicochemical properties of melon based on parameters of acoustic properties. A total of 120 Honey Globe melons (Cucumis melo var. inodorus) cultivated in the Greenhouse FRC UGM were used as samples. Each fruit was measured non-destructively using knocking tools to generate data on dominant frequency, magnitude, zero-moment power (Mo), and short-term energy (STE). Destructive testing was subsequently conducted to measure moisture content, total soluble solids, and hardness. The destructive and non-destructive test data obtained were processed using an artificial neural network (ANN) to build a prediction model. The training algorithm used was Backpropagation. The results of the ANN training showed the best network structure was 4-4-1. The best learning rates used are 0.1 and 1. Analysis of the reliability of predictions using artificial neural networks carried out based on the calculation of R2 and Mean Squared Error (MSE) values shows that the prediction model consisting of model I, model II, and model III can fulfill the predictions made with high R2 test values, which are sequentially 0.98875; 0.96716; and 0.9215; and MSE values that are relatively small, which are sequentially 0.0016; 0.5296; and 0.2002.

Keywords

Acoustic Impulse Response; Artificial Neural Network; Melon; Non-Destructive test

References

Agusta, W., and U. Ahmad. 2016. Study on Golden Apollo Melon Ripeness Level Using Acoustic Impulse Parameters. Jurnal Keteknikan Pertanian 04(2):1–8.

Annisa, P., and H. Gustia. 2018. Respon Pertumbuhan dan Produksi Tanaman Melon Terhadap Pemberian Pupuk Organik Cair Tithonia diversifolia. Prosiding SEMNASTAN:104–114.

Chamidah, N., W. Jurusan Teknik Informatika, U. Salamah, and K. Kunci Backpropagasi. 2012. Pengaruh Normalisasi Data pada Jaringan Syaraf Tiruan Backpropagasi Gradient Descent Adaptive Gain (BPGDAG) untuk Klasifikasi. Jurnal Itsmart 1(1):28–33.

Cho, B. H., K. B. Lee, Y. Hong, and K. C. Kim. 2022. Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model. Agronomy 12(9).

Dahwanu, O., and Sarjono. 2019. Analisis dan Perancangan Jaringan Saraf Tiruan untuk Mengidentifikasi Tingkat Kematangan Buah Belimbing Manis (Averrhoa carambola L.). Jurnal Manajemen Sistem Informasi 4(1):65–74.

Dananjaya, R. H., S. Sutrisno, and S. Fitriady. 2022. Penerapan Artificial Neural Network (Ann) Dalam Memprediksi Kapasitas Dukung Fondasi Tiang. Matriks Teknik Sipil 10(4):419.

Hamdanah, F. H., and D. Fitrianah. 2021. Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) 10(1):23.

Haryanto, B., I. W. Budiastra, and A. Trisnobudi. 2000. Hubungan Antara Sifat Fisik dan Gelombang Ultrasonik Durian Utuh dengan Sifat Fisiko Kimia Daging Durian XI(2).

Juansah, J., I. W. Budiastra, and Suroso. 2006. Pengembangan Sistem Pengukuran Gelombang Ultrasonik Untuk Penentuan Kualitas Buah Manggis (Gracinia mangostana L) 2(2):167–178.

Kardan, A. A., H. Sadeghi, S. S. Ghidary, and M. R. F. Sani. 2013. Prediction of student course selection in online higher education institutes using neural network. Computers and Education 65:1–11.

Karthickumar, P., V. R. Sinija, K. Alagusundaram, and B. K. Yadav. 2018. Evaluation of muskmelon ripening based on acoustic response. Journal of Applied Horticulture 20(2):125–128.

Khairi, A. N., A. F. Falah, and A. P. Pamungkas. 2017. Analisis Mutu Pascapanen Melon (Cucumis melo L.) Kultivar Glamour Sakata Selama Penyimpanan. CHEMICA: Jurnal Teknik Kimia 4(2):47.

Khashei, M., and M. Bijari. 2010. An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with Applications 37(1):479–489.

Khoshnam, F., M. Namjoo, and H. Golbakhshi. 2015. Acoustic testing for melon fruit ripeness evaluation during different stages of ripening. Agriculturae Conspectus Scientificus 80(4):197–204.

Muchtadi, T., Sugiyono, and F. Ayustaningwarno. 2011. Ilmu Pengetahuan Bahan Pangan. Cetakan 3. CV. Alfabeta, Bandung.

Pamungkas, W. A., and N. Bintoro. 2021. Karakteristik kematangan buah melon ‘premier’ (Cucumis melo L.) Berdasarkan sifat akustik. Agrointek : Jurnal Teknologi Industri Pertanian 15(3):715–727.

Phey, O., N. Hashim, and B. Maringgal. 2020. Quality evaluation of mango using non-destructive approaches: A review. Journal of Agricultural and Food Engineering 1(1):1–8.

Setiaman, S. 2019. Analisis Korelasi dan Regresi Linier Sederhana Dengan SPSS Versi 24. Page Statistik.

Setiawati, R., and N. Bafdal. 2020. Dampak Kualitas Air Tanah Terhadap Kualitas Melon (Cucumis Melo L.). Agrotekma: Jurnal Agroteknologi dan Ilmu Pertanian 4(2):83–93.

Yamamoto, H., M. Iwamoto, and S. Haginuma. 1980. Acoustic Impulse Response Method for Measuring Natural Frequency of Intact Fruits and Preliminary Applications To Internal Quality Evaluation of Apples and Watermelons. Journal of Texture Studies 11(2):117–136.

DOI

https://doi.org/10.21107/agrointek.v18i3.21746

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Avicenna Nur Kasih, Nafis Khuriyati, affan fajar falah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.