Variasi lama waktu fermentasi terhadap karakteristik kimia teh kombucha: meta-analisis

Rina Dias Agustin, Puspo Edi Giriwono, Endang Prangdimurti

Abstract

One type of beverage that has functional effects and has been known for a long time is kombucha tea, a fermented drink made with tea leaves, sugar, and Symbiotic Culture of Bacteria and Yeast (SCOBY). Kombucha tea tastes sourly like apple vinegar, sparkling contains polyphenol compounds, organic acids, other biomolecules, and probiotics. The fermentation time is a factor that needs to be considered in making kombucha tea. Much research has been done on kombucha tea, but the variation in duration of the fermentation process is very diserve, so a meta-analysis is needed to obtain valid and informative conclusions from a comprehensive study about the effect of fermentation time on the kombucha tea chemical characteristics. The PRISMA flowchart and the effect size of Standardized Mean Difference (SMD) in the form of Hedges'd were choosen as  a quantitative synthesis method of meta-analysis. The results showed that the fermentation process conducted for 8-14 days had a strong effect on all parameters (flavonoid, ethanol, acetic acid levels, total phenolic, total acidity, and antioxidant activity) with SMD values >0.8, p values <0.001 to 0.732, and heterogeneity values of 57,62% to 89,40%. Kombucha tea, with a fermentation time of 7 days had significantly higher antioxidant activity. The length of the fermentation process has the strongest effect on the acetic acid levels of kombucha tea.

Keywords

antioxidant activity; chemical characteristics; fermentation time; kombucha tea; meta-analysis

References

Ahmed, R. F., M. S. Hikal, and K. A. Abou-Taleb. 2020. Biological, chemical, and antioxidant activities of different types kombucha. Annals of Agricultural Science 65: 35-41.

Akarca, G. 2021. Determination of potential antimicrobial activities of some local berries fruits in kombucha tea production. Brazilian Archives of Biology and Technology 64: 1-15.

Antolak, H., D. Piechota, and A. Kucharska. 2021. Kombucha tea- a double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 10(1541): 1-20.

Battikh, H., K. Chaieb, A. Bakhrouf, and E. Ammar. 2013. Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry 37(2): 231-236.

Bhattacharya, S., R. Gachhui, and P. C. Sil. 2011. Hepatoprotective properties of kombucha tea against tbhp-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology 18: 221-234.

Bhattacharya, S., R. Gachhui, and P. C. Sil. 2013. Effect of kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and Chemical Toxicology 60: 328-340.

Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to meta-analysis. John Wiley & Sons, Ltd, United Kingdom.

Chakravorty, S., S. Bhattacharya, A. Chatzinotas, W. Chajraborty, D. Bhattacharya, and R. Gachhui. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63-72.

Chen, C., and B. Y. Liu. 2000. Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology 89: 834–839.

Coelho, R. M. D., A. L. de Alemida, R. Q. G. do Amaral, R. N. da Mota, and P. H. M. de Sousa. 2020. Kombucha: Review. International Journal of Gastronomy and Food Science 22: 1-12.

Duenas, M., T. Hernandez, and I. Estrella. 2007. Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes effect on their antioxidant activity. Food Chemistry 101: 90-97.

Ecker, E. D., and A. C. Skelly. 2010. Conducting a winning literature search. Evidence Based Spine Care Journal 1(1): 9-14.

Gaggia, F., L. Baffoni, M. Galiano, D. S. Nielsen, R. R. Jakobsen, J. L. Castro-Mejía, S. Bosi, F. Truzzi, F. Musumeci, G. Dinelli, and D. Di Gioia. 2019. Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients 11(1): 1-22.

Goh, W. N., A. Rosma, B. Kaur, A. Fazilah, A. A. Karim, and R. Bhat. 2012. Fermentation of black tea broth (kombucha): effect of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal 19(1): 109-117.

Gurevitch, J., J. Koricheva, S. Nakagawa, and G. Stewart. 2018. Meta-analysis and the science of research synthesis. Nature 555: 175-182.

Jakubczyk, K., I. Gutowska, J. Antoniewicz, and K. Janda. 2020. Evaluation of fluoride and selected chemical parameters in kombucha derived from white, green, black, and red tea. Biological Trace Element Research 1-6.

Jakubczyk, K., J. Kaldunska, J. Kochman, and K. Janda. 2020. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black, and red tea. Antioxidant 9(447): 1-15.

Jayabalan, R., S. Marimuthu, and K. Swaminathan. 2007. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry 102(1): 392–398.

Jayabalan, R., P. Subathradevi, S. Marimuthu, M. Sathishkumar, and K. Swaminathan. 2008. Changes in free radical scavenging ability of kombucha tea during fermentation. Food Chemistry 109: 227-234.

Jayabalan, R., K. Malini, M. Sathishkumar, K. Swaminathan, and S. E. Yun. 2010. Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Science Of Biotechnology 19(3): 843-847.

Kaewkod, T., S. Bovonsombut, and Y. Tragoolpua. 2019. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7(700): 1-18.

Khaneghah, A. M., and A. S. Sant’Ana. 2020. Systematic review and meta-analysis: Applications in food science, challenges, and perspectives. Food Research International 134(109245).

Kasenta, A. M. 2016. Efek Raktopamin Hidrokoloida terhadap Karakteristik Fermentasi Rumen, Produksi, dan Kualitas Daging Sapi Potong: Kajian In Vitro dan Meta-Analisis. Thesis. Bogor: Institut Pertanian Bogor.

Koricheva, J., J. Gurevitch, and K. Mengersen. 2013. Handbook of meta-analysis in ecology and evolution. Princeton University Press, United Kingdom.

Loncar, E., M. Djuric, R. Malbasa, L. J. Kolarov, and M. Klasnja. 2006. Influence of working conditions upon kombucha conducted fermentation of black tea. Food and Bioproduct Processing 84(3): 186-192.

Malbasa, R., E. Loncar, and M. Djuric. 2007. Comparison of the products of kombucha fermentation on sucrose and molasses. Food Chemistry 106: 1039-1045.

Malbasa, R. V., E. S. Loncar, J. S. Vitas, and J. M. Canadovic-Brunet. 2011. Influence of starter culture on the antioxidant activity of kombucha beverage. Food Chemistry 127(4): 1727-1731.

Markov, S., V. Jerinic, D. Cvetkovic, E. Loncar, and R. Malbasa. 2003. Kombucha–functional beverage: Composition, characteristics and process of biotransformation. Hemijska Industrija 57(10): 456–462.

Marsh, A. J., O. O’Sullivan, C. Hill, R. P. Ross, and P. D. Cotter. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38: 171-178.

Methley, A. M., S. Campbell, C. Chew-Graham, R. McNally, and S. Cheraghi-Sohi. 2014. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Service Research 14: 579.

Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman, and The Prisma Group. 2009. Preffered reporting items for systematic review and meta-analysis: The prisma statement. PLoS Medicine 6(7).

Mordor Intelligence. 2019. Global Kombucha Market-Growth, Trends and Forecast (2019-2024). Mordor Intellegence web-site: retrived from https://www.mordorintelligence.com/industry-reports/kombucha-market.

Soto, S. A. V., S. Beaufort, J. Bouajila, J. P. Souchard, and P. Taillandier. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science 83(3): 580-588.

Sreeramulu, G., Y. Zhu, and W. Knol. 2001. Characterization of antimicrobial activity in kombucha fermentation. Acta Biotechnology 21: 49-56.

St-Pierre, N. R. 2001. Invited review: integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 84(4): 741-755.

Sun, T. Y., J. S. Li, and C. Chen. 2015. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis 23: 709-718.

Tawfik, G. M., K. A. S. Dila, M. Y. F. Mohamed, D. N. H. Tam, N. D. Kien, A. M. Ahmed, and N. T. Huy. 2019. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Tropical Medicine and Health 47(46): 1-9.

Verhagen, A. P., and M. L. Ferreira. 2014. Forest plot. Journal of Physiotherapy 60: 170-173.

Vina, I., R. Linde, A. Patetko, and P. Semjonovs. 2013. Glucoronic acid from fermentation beverages: biochemical functions in humans and its role in health protection. International Journal of Recent Research And Appllied Studies 14(2): 217-230.

Vitas, J., S. Vukmanovic, J. Cakarevic, L. Popovic, and R. Malbasa. 2020. Kombucha fermentation of six medicinal herbs: Chemical profile and biological activity. Chemical Industry & Chemical Engineering Quarterly 26(2): 157-170.

Vohra, B. M., S. Fazry, F. Sairi, and O. Babul-Airianah. 2019. Effects of medium variation and fermentation time on the antioxidant and antimicrobial properties of kombucha. Malaysian. Journal of Fundamental Applied Sciences 15: 298-302.

DOI

https://doi.org/10.21107/agrointek.v18i3.19200

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Rina Dias Agustin, Puspo Edi Giriwono, Endang Prangdimurti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.