Aplikasi enkapsulan hydroxy propyl methyl cellulose dan gum arab pada pembuatan bubuk semangka

Ignasius Radix AP Jati, Nicolas Hadisaputra, Erni Setijawaty, Rachel Meiliawati Yoshari

Abstract

Watermelon is a widely produced fruit in Indonesia. Abundant production and limited utilization make watermelons susceptible to quality loss and damage. Watermelon can be processed into powder to expand the variety of processing and reduce post-harvest losses. Various drying methods can be carried out, while a cabinet dryer at a temperature of 60-65 °C for 6 hours is considered the simplest method. Moreover, encapsulants such as hydroxy propyl methyl cellulose (HPMC) and gum arabic can be added. This study aims to apply different encapsulants in the watermelon powder manufacturing process and evaluate their effect on the physicochemical properties of the watermelon powder. A nested factorial randomized block design was used. The nest factor is the type of encapsulant, while the concentration is the nesting factor. The difference in concentration was 2.5 %, 5 % and 7.5 % for both HPMC and gum arabic. Each treatment was repeated four times. Watermelon powder quality parameters evaluated were moisture content, hygroscopicity, total phenol, antioxidant activity, color, and pH. ANOVA with = 5 % was implemented for statistical analysis and continued with Duncan's Multiple Range Test if a significant difference was observed. The increasing concentration of gum arabic increased the water content (2.19-3.42 %). While hygroscopicity decreased (21.84-17.33 %), total phenol decreased from 1370.91 to 765.23 mg GAE/kg sample. The antioxidant activity of the sample using the DPPH method was decreased (89.29-52.90 %). The use of gum arabic can maintain the red color of powder and the pH in the range of 5.39-5.57. On the other hand, HPMC application can reduce water content (3.32-2.15 %), hygroscopicity level 23.53-17.17 %; total phenol 1172.05-539.09 mg GAE/kg; antioxidant activity 65.88-29.54 %. The HPMC can maintain the red color of powder and increase the pH (5.83-6.30).

Keywords

arabic gum; hpmc; powder; watermelon

References

Aderiye, B.I., David, O.M., Fagbohun, E.D., Faleye, J., Olajide, O.M. 2020. Immunomodulatory and phytomedicinal properties of watermelon juice and pulp (Citrullus lanatus Linn): A review. GSC Biol. and Pharm. Sci. 11, 153–165. https://doi.org/10.30574/gscbps.2020.11.2.0079

Ahmed, J., Roos, Y.H., Rahman, S. (Eds.) 2017. Glass transition and phase transitions in food and biological materials. John Wiley & Sons Ltd, Chichester, West Sussex ; Hoboken, NJ.

Arepally, D., Goswami, T.K. 2019. Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT 99, 583–593. https://doi.org/10.1016/j.lwt.2018.10.022

Astadi, I.R., Astuti, M., Santoso, U., Nugraheni, P.S. 2009. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chemistry 112, 659–663. https://doi.org/10.1016/j.foodchem.2008.06.034

Aziz, M.G., Yusof, Y.A., Blanchard, C., Saifullah, M., Farahnaky, A., Scheiling, G. 2018. Material Properties and Tableting of Fruit Powders. Food Eng Rev 10, 66–80. https://doi.org/10.1007/s12393-018-9175-0

Bakmohamadpor, M., Javadi, A., Azadmard-Damirchi, S., Jafarizadeh-Malmiri, H. 2021. Effect of barberry (Berberis vulgaris) fruit powder on the quality and shelf life stability of puffed corn extrude. NFS Journal 22, 9–13. https://doi.org/10.1016/j.nfs.2020.12.004

Balani, K., Agarwal, A., Verma, V., Narayan, R. 2015. Biosurfaces: a materials science and engineering perspective. The American Ceramic Society/Wiley, Hoboken, New Jersey.

Bhandari, B. (Ed.) 2013. Handbook of food powders: processes and properties. Woodhead Publishing, Cambridge, UK.

Daza, L.D., Fujita, A., Fávaro-Trindade, C.S., Rodrigues-Ract, J.N., Granato, D., Genovese, M.I. 2016. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001

de Oliveira Carvalho, J., Orlanda, J.F.F. 2017. Heat stability and effect of pH on enzyme activity of polyphenol oxidase in buriti (Mauritia flexuosa Linnaeus f.) fruit extract. Food Chemistry 233, 159–163. https://doi.org/10.1016/j.foodchem.2017.04.101

Eun, J.-B., Maruf, A., Das, P.R., Nam, S.-H., 2020. A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition 60, 3547–3572. https://doi.org/10.1080/10408398.2019.1698511

Galdeano, M.C., dos Santos Gomes, F., Chávez, D.W.H., Almeida, E.L., Moulin, L.C., de Grandi Castro Freitas de Sá, D., Tonon, R.V. 2022. Lycopene-rich watermelon concentrate used as a natural food colorant: Stability during processing and storage. Food Research International 160, 111691. https://doi.org/10.1016/j.foodres.2022.111691

Ge, X., Jing, L., Zhao, K., Su, C., Zhang, B., Zhang, Q., Han, L., Yu, X., Li, W. 2021. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chemistry 335, 127655. https://doi.org/10.1016/j.foodchem.2020.127655

Ghadermazi, Reza, Hamdipour, S., Sadeghi, K., Ghadermazi, Rojin, Khosrowshahi Asl, A. 2019. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Sci Nutr 7, 3363–3377. https://doi.org/10.1002/fsn3.1206

Glicksman, M. (Ed.) 2019. Food hydrocolloids. CRC Press, Place of publication not identified.

Gopinathan, M., Yusof, Y.A., Pui, L.P. 2020. Effects of different drying methods on the physicochemical and antioxidant content of “cempedak” ( Artocarpus Integer L.) powder. J. Food Process. Preserv. 44. https://doi.org/10.1111/jfpp.14966

Hamlaoui, I., Bencheraiet, R., Bensegueni, R., Bencharif, M. 2018. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives. Journal of Molecular Structure 1156, 385–389. https://doi.org/10.1016/j.molstruc.2017.11.118

Jati, I.R.A.P., Nohr, D., Konrad Biesalski, H. 2014. Nutrients and antioxidant properties of Indonesian underutilized colored rice. Nutrition & Food Science 44, 193–203. https://doi.org/10.1108/NFS-06-2013-0069

Khatibi, S.A., Ehsani, A., Nemati, M., Javadi, A., 2021. Microencapsulation of Zataria multiflora Boiss. essential oil by complex coacervation using gelatin and gum arabic: Characterization, release profile, antimicrobial and antioxidant activities. J. Food Process. Preserv. 45. https://doi.org/10.1111/jfpp.15823

Kim, I.-D., Dhungana, S., Park, Y.-S., Kim, D., Shin, D.-H. 2017. Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation. Molecules 22, 1462. https://doi.org/10.3390/molecules22091462

Li, J., Zhao, L., Lin, X., Shen, L., Feng, Y. 2017. Co-spray Drying with HPMC as a Platform to Improve Direct Compaction Properties of Various Tablet Fillers. AAPS PharmSciTech 18, 3105–3115. https://doi.org/10.1208/s12249-017-0794-1

Li, X., Yang, R., Ju, H., Wang, K., Lin, S. 2021. Identification of dominant spoilage bacteria in sea cucumber protein peptide powders (SCPPs) and methods for controlling the growth of dominant spoilage bacteria by inhibiting hygroscopicity. LWT 136, 110355. https://doi.org/10.1016/j.lwt.2020.110355

Liang, X., Ma, C., Yan, X., Liu, X., Liu, F. 2019. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene. Trends in Food Science & Technology 93, 185–196. https://doi.org/10.1016/j.tifs.2019.08.019

Maoto, M.M., Beswa, D., Jideani, A.I.O. 2019. Watermelon as a potential fruit snack. International Journal of Food Properties 22, 355–370. https://doi.org/10.1080/10942912.2019.1584212

Marcillo-Parra, V., Tupuna-Yerovi, D.S., González, Z., Ruales, J. 2021. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application – A review. Trends in Food Science & Technology 116, 11–23. https://doi.org/10.1016/j.tifs.2021.07.009

Milojevic, Z., Ennis, R., Toscani, M., Gegenfurtner, K.R. 2018. Categorizing natural color distributions. Vision Research 151, 18–30. https://doi.org/10.1016/j.visres.2018.01.008

Mohd Zin, Z., Razman, N.H., M., H., Abd Manap, M.N., Zainol, M.K. 2021. The influence of Gum Arabic on the physicochemical and antimicrobial activity of the microencapsulated Mahkota Dewa (Phaleria macrocarpa) leaves. Food Res. 5, 203–213. https://doi.org/10.26656/fr.2017.5(3).580

Nadeem, M., Navida, M., Ameer, K., Siddique, F., Iqbal, A., Malik, F., Ranjha, M.M.A.N., Yasmin, Z., Kanwal, R., Javaria, S. 2022. Watermelon nutrition profile, antioxidant activity, and processing. Korean J. Food Preserv. 29, 531–545. https://doi.org/10.11002/kjfp.2022.29.4.531

Ng, M.L., Sulaiman, R. 2018. Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT 88, 80–86. https://doi.org/10.1016/j.lwt.2017.08.032

Palugan, L., Filippin, I., Cirilli, M., Moutaharrik, S., Zema, L., Cerea, M., Maroni, A., Foppoli, A., Gazzaniga, A. 2021. Cellulase as an “active” excipient in prolonged-release HPMC matrices: A novel strategy towards zero-order release kinetics. International Journal of Pharmaceutics 607, 121005. https://doi.org/10.1016/j.ijpharm.2021.121005

Park, H., Kim, Y.-J., Shin, Y. 2020. Estimation of daily intake of lycopene, antioxidant contents and activities from tomatoes, watermelons, and their processed products in Korea. Appl Biol Chem 63, 50. https://doi.org/10.1186/s13765-020-00534-w

Rosário, F.M., Biduski, B., Santos, D.F. dos, Hadlish, E.V., Tormen, L., Santos, G.H.F. dos, Pinto, V.Z. 2021. Red araçá pulp microencapsulation by hydrolyzed pinhão starch, and tara and arabic gums. J Sci Food Agric 101, 2052–2062. https://doi.org/10.1002/jsfa.10825

Ruengdech, A., Siripatrawan, U. 2022. Improving encapsulating efficiency, stability, and antioxidant activity of catechin nanoemulsion using foam mat freeze-drying: The effect of wall material types and concentrations. LWT 162, 113478. https://doi.org/10.1016/j.lwt.2022.113478

Sarabandi, K., Jafari, S.M., Mahoonak, A.S., Mohammadi, A. 2019. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133

Spasojević, L., Bučko, S., Kovačević, D., Bohinc, K., Jukić, J., Abram, A., Požar, J., Katona, J. 2020. Interactions of zein and zein/rosin nanoparticles with natural polyanion gum arabic. Colloids and Surfaces B: Biointerfaces 196, 111289. https://doi.org/10.1016/j.colsurfb.2020.111289

Suet Li, T., Sulaiman, R., Rukayadi, Y., Ramli, S. 2021. Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocolloids 116, 106492. https://doi.org/10.1016/j.foodhyd.2020.106492

Suhag, Y., Nayik, G.A., Nanda, V. 2016. Effect of gum arabic concentration and inlet temperature during spray drying on physical and antioxidant properties of honey powder. Food Measure 10, 350–356. https://doi.org/10.1007/s11694-016-9313-4

Tavares, L., Santos, L., Zapata Noreña, C.P. 2021. Bioactive compounds of garlic: A comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds and their industrial applicability. Trends in Food Science & Technology 114, 232–244. https://doi.org/10.1016/j.tifs.2021.05.019

Vani, B., Kalyani, S., Pabba, M., Sridhar, S. 2021. Forward osmosis aided concentration of lycopene carotenoid from watermelon juice. J Chem Technol Biotechnol 96, 1960–1973. https://doi.org/10.1002/jctb.6720

Wang, J., Li, H., Chen, Z., Liu, W., Chen, H. 2016. Characterization and storage properties of a new microencapsulation of tea polyphenols. Industrial Crops and Products 89, 152–156. https://doi.org/10.1016/j.indcrop.2016.05.013

Wang, S., Li, J., Lin, X., Feng, Y., Kou, X., Babu, S., Panicucci, R. 2015. Novel coprocessed excipients composed of lactose, HPMC, and PVPP for tableting and its application. International Journal of Pharmaceutics 486, 370–379. https://doi.org/10.1016/j.ijpharm.2015.03.069

Wang, Y., Xie, Y., Xu, D., Lin, X., Feng, Y., Hong, Y. 2014. Hydroxypropyl Methylcellulose Reduces Particle Adhesion and Improves Recovery of Herbal Extracts During Spray Drying of Chinese Herbal Medicines. Drying Technology 32, 557–566. https://doi.org/10.1080/07373937.2013.843543

Zaidul, I.S.M., Fahim, T.K., Sahena, F., Azad, A.K., Rashid, M.A., Hossain, M.S. 2020. Dataset on applying HPMC polymer to improve encapsulation efficiency and stability of the fish oil: In vitro evaluation. Data in Brief 32, 106111. https://doi.org/10.1016/j.dib.2020.106111

Zamuz, S., Munekata, P.E.S., Gullón, B., Rocchetti, G., Montesano, D., Lorenzo, J.M. 2021. Citrullus lanatus as source of bioactive components: An up-to-date review. Trends in Food Science & Technology 111, 208–222. https://doi.org/10.1016/j.tifs.2021.03.002

Zeb, A. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 44. https://doi.org/10.1111/jfbc.13394

Zhang, L., Zeng, X., Qiu, J., Du, J., Cao, X., Tang, X., Sun, Y., Li, S., Lei, T., Liu, S., Lin, L. 2019. Spray-dried xylooligosaccharides carried by gum Arabic. Industrial Crops and Products 135, 330–343. https://doi.org/10.1016/j.indcrop.2019.04.045

Zia, S., Khan, M.R., Shabbir, M.A., Aadil, R.M. 2021. An update on functional, nutraceutical and industrial applications of watermelon by-products: A comprehensive review. Trends in Food Science & Technology 114, 275–291. https://doi.org/10.1016/j.tifs.2021.05.039

Zou, Y., Qian, Y., Rong, X., Cao, K., McClements, D.J., Hu, K. 2021. Encapsulation of quercetin in biopolymer-coated zein nanoparticles: Formation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids 120, 106980. https://doi.org/10.1016/j.foodhyd.2021.106980

DOI

https://doi.org/10.21107/agrointek.v17i4.17231

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Ignasius Radix AP Jati, Nicolas Hadisaputra, Erni Setijawaty, Rachel Meiliawati Yoshari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.