Multiple linear regression analysis and lagrange polynomial on pyrolysis process of coconut shell waste producing solid biochar

Rosdanelli Hasibuan, Rita Sundari, Hans Martua Pardede, Vikram Alexander, Juliza Hidayati

Abstract

Coconut shell waste has generated environmental problems in Indonesia. Due to fossil fuel shortage, coconut shell waste has been advantaged as an energy source to replace the fossil energy. A pyrolysis technique has been used to crack coconut shell waste into charcoal or solid biochar. An MLR (Multiple Linear Regression) analysis and Lagrange polynomial interpolation has been applied to the pyrolysis process related to pyrolysis temperature and time-affected charcoal characteristics. This type of analysis often used for process optimization. The charcoal characteristics are investigated in terms of their yield, water content, ash content, volatile matter, and calorific value. The experimental result shows that the highest calorific value (≈ 7750 cal/g) was obtained at 450oC and 3h with charcoal characteristics: 2.75% water content, 2.70% ash content, and 9.50% volatile matter that meets the SNI requirements. The MLR analysis has justified that the effect of pyrolysis temperature is more dominant than pyrolysis time on almost all charcoal characteristics. The Lagrange polynomial interpolation shows the highest calorific value (≈ 7784 cal/g) obtained at 500oC and 3h. The finding applying MLR analysis and Lagrange polynomial interpolation based on experimental results is a new breakthrough in this investigation.  

Keywords

coconut shell waste; Lagrange polynomial; MLR analysis; pyrolysis.

Full Text:

PDF

References

Basu, P. 2018. Biomass gasification, pyrolysis and torrefaction: Practical design and theory. Page Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic press, Boston.

Boudrant, J., and J. Legrand. 2010. Bioprocess engineering. Process Biochemistry 45(11):1757.

Claoston, N., A. W. Samsuri, M. H. Ahmad Husni, and M. S. Mohd Amran. 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research 32(4):331–339.

Dincer, I., C. O. Colpan, and O. Kizilkan. 2018. Exergetic, Energetic and Environmental Dimensions. Academic Press, United States.

Efiyanti, L., S. A. Wati, D. Setiawan, S. Saepuloh, and G. Pari. 2020. Sifat Kimia Dan Kualitas Arang Lima Jenis Kayu Asal Kalimantan Barat. Jurnal Penelitian Hasil Hutan 38(1):45–56.

George, D., and P. Mallery. 2011. SPSS for Windows step by step : a simple guide and reference 17.0 update. Allyn & Bacon, New York.

Iskandar, N., S. Nugroho, and M. F. Feliyana. 2019. Uji Kualitas Produk Briket Arang Tempurung Kelapa Berdasarkan Standar Mutu Sni. Jurnal Ilmiah Momentum 15(2).

Junary, E., J. P. Pane, and N. Herlina. 2015. Pengaruh suhu dan waktu karbonisasi terhadap nilai kalor dan karakteristik pada pembuatan bioarang berbahan baku pelepah aren (Arenga pinnata). Jurnal Teknik Kimia USU 4(2):46–52.

Kusuma, W., A. Sarwono, and R. D. Noriyati. 2013. Kajian Eksperimental Terhadap Karakteristik Pembakaran Briket Limbah Ampas Kopi Instan dan Kulit Kopi (Studi Kasus Di Pusat Penelitian Kopi Dan Kakao Indonesia). Jurnal Teknik Pomits:1–6.

Lee, Y.-E., D.-C. Shin, Y. Jeong, I.-T. Kim, and Y.-S. Yoo. 2019. Effects of pyrolysis temperature and retention time on fuel characteristics of food waste feedstuff and compost for co-firing in coal power plants. Energies 12(23):4538.

Lestari, D., M. A. Asy’ari, and R. Hidayatullah. 2016. Geokimia Batubara Untuk Beberapa Industri. Jurnal POROS TEKNIK 8(1):48–54.

Lestari, K. D. L. F., R. D. Ratnani, Suwardiyono, and Nur Kholis. 2017. Pengaruh Waktu Dan Suhu Pembuatan Karbon Aktif Dari Tempurung Kelapa Sebagai Upaya Pemanfaatan Limbah Dengan Suhu Tinggi Secara Pirolisis. Inovasi Teknik Kimia 2(1):32–38.

Negara, D. N. K. P., T. G. T. Nindhia, Lusiana, I. Made Astika, and C. I. P. K. Kencanawati. 2020. Development and characterization of activated carbons derived from lignocellulosic material. Materials Science Forum 988 MSF:80–86.

Pytlak, R. 1999. Numerical Methods for Optimal Control Problems with State Constraints. Page Lecture Notes in Mathematics. Springer Science & Business Media.

Rahmadani, R., F. Hamzah, and F. H. Hamzah. 2017. Pembuatan briket arang daun Kelapa sawit (Elaeis guineensis jacq.) dengan perekat pati sagu (Metroxylon sago rott.). Riau University.

Sadaka, S., M. A. Sharara, A. Ashworth, P. Keyser, F. Allen, and A. Wright. 2014. Characterization of biochar from switchgrass carbonization. Energies 7(2):548–567.

Siahaan, S., M. Hutapea, and R. Hasibuan. 2013. Penentuan kondisi optimum suhu dan waktu karbonisasi pada pembuatan arang dari sekam padi. Jurnal Teknik Kimia USU 2(1):26–30.

Singh, A., A. K. Biswas, R. Singhai, B. L. Lakaria, and A. K. Dubey. 2015. Effect of pyrolysis temperature and retention time on mustard straw derived biochar for soil amendment. J. Basic. Appl. Sci. Res 5(9):31–37.

Wardani, S., Pranoto, and D. A. Himawanto. 2018. Kinetic parameters and calorific value of biochar from mahogany (Swietenia macrophylla King) wood pyrolysis with heating rate and final temperature variations. AIP Conference Proceedings 2049.

Zelditch, M. L., D. L. Swiderski, and H. D. Sheets. 2012. Geometric morphometrics for biologists: a primer. academic press, London.

Ziebik, A., and K. Hoinka. 2013. Mathematical Modeling and Optimization of Energy Systems. Pages 29–58 in A. Ziębik and K. Hoinka, editors. Green Energy and Technology. Springer London, London.

DOI

https://doi.org/10.21107/agrointek.v17i3.17092

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Rosdanelli Asibuan, Rita Sundari, Hans Martua Pardede, Vikram Alexander, Juliza Hidayati

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.