Optimasi microwave-assisted pretreatment dalam delignifikasi asam oksalat pada kulit kakao menggunakan response surface methodology (RSM)

Ahmad Fadhlul Kamal, Efri Mardawati, Eko Heri Purwanto, S. Rosalinda

Abstract

Cocoa (Theobroma cacao L.) pod husk is a solid waste originating from the cocoa beans processing industry in very abundant quantities. The components that make up the cocoa pod husk include cellulose, hemicellulose, and lignin. Cocoa pod husk has a large cellulose content, so it has the potential to be used as cellulose-based bioproducts such as bioethanol. This study aimed to determine the optimum power, irradiation time, and concentration of oxalic acid in the cocoa pod husk microwave-pre-treatment delignification process. The cacao pod husk used in this study is a forastero variety from Pakuwon, Sukabumi, West Java, Indonesia. Cocoa pod husk raw material contains lignin, cellulose, and hemicellulose, respectively 15.73%, 40.14%, and 19.33%. The optimal conditions obtained using the Response Surface Methodology (RSM) model with factors that affect the process are power, irradiation time, and concentration of oxalic acid with response levels of cellulose, hemicellulose, and lignin after microwave pre-treatment. The results of the optimum conditions of power, irradiation time, and concentration of oxalic acid in the microwave assisted-pre-treatment process were 450 Watt, 10 minutes, dan 1%, respectively. The optimum conditions in the delignification process resulted in the levels of lignin, cellulose, and hemicellulose, respectively, which were 8.10%, 39.37%, dan 21.40%. Based on the lignocellulosic test at optimum conditions, the lignin decreased by 48.506%, cellulose decreased by 1.918%, and hemicellulose content increased by 10.709%. The results indicated optimum conditions could be applied in bioethanol and xylitol production

Keywords

cellulose; cocoa pod husk; hemicellulose; lignin; microwave; pre-treatment

References

Aggarwal, N., P. Pal, N. Sharma, and S. Saravanamurugan. 2021. Consecutive Organosolv and Alkaline Pretreatment: An Efficient Approach toward the Production of Cellulose from Rice Straw. ACS Omega 6(41):27247–27258.

Agustini, L., and L. Efiyanti. 2015. The Effects of Delignification Treatments on Cellulose Hydrolysis and Ethanol Production from Lignocellulosic Wastes 33(1):69–80.

Ahmad, F. H., N. Ibrahim, M. S. Mahmud, W. Ali, M. B. M. Piah, S. Salleh, and S. Nurdin. 2021. Microwave Irradiation Optimization For Efficient Lignin Removal From Cocoa Shell Waste Using Alkali. IIUM Engineering Journal 22(2):21–30.

Asiedu, N. Y., F. A. Neba, and A. Addo. 2019. Modeling the attainable regions for catalytic oxidation of renewable biomass to specialty chemicals: Waste biomass to carboxylic acids. South African Journal of Chemical Engineering 30(July):1–14.

Bajpai, P. 2016. Pretreatment of lignocellulosic biomass. Page Biomass for Biofuels.

Cheng, B., X. Zhang, Q. Lin, F. Xin, R. Sun, X. Wang, and J. Ren. 2018. A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production. Biotechnology for Biofuels 11(1):1–9.

Cruz, G., M. Huuhtanen, M. Pirila, and E. Alvarenga. 2012. Production of Activated Carbon from Cocoa (Theobroma cacao) Pod Husk. Journal of Civil & Environmental Engineering 02(02).

Daud, Z., A. Sari, M. Kassim, A. M. Aripin, H. Awang, Z. M. Hatta, V. Education, U. Tun, H. Onn, and B. Pahat. 2013. Chemical Composition and Morphological of Cocoa Pod Husks and Cassava Peels for Pulp and Paper Production. Australian Journal of Basic and Applied Sciences 7(9):406–411.

Direktorat Jenderal Perkebunan. 2021. Produksi Kakao Menurut Provinsi di Indonesia , 2017 - 2021 2021:2021.

Hamdy, A., S. A. Elhafez, H. Hamad, and R. Ali. 2021. The interplay of autoclaving with oxalate as pretreatment technique in the view of bioethanol production based on corn stover. Polymers 13(21).

Harahap, B. M., A. I. Dewantoro, M. R. Maulid, E. Mardawati, and V. P. Yarlina. 2020a. Autoclave-assisted weak acid pretreatment of oil palm empty fruits bunches for fermentable sugar production. IOP Conference Series: Earth and Environmental Science 443(1):0–12.

Harahap, B. M., R. Sudarman, F. Sajidah, D. M. I. Wahyuni, and D. T. Sitorus. 2020b. Effect of Microwave Pretreatment on Production of Reducing Sugar from Oil Palm Empty Fruit Bunches. Jurnal Teknik Kimia dan Lingkungan 4(2):141–152.

Hidayat, M. R. 2013. Teknologi Pretreatment Bahan Lignoselulosa:33–48.

Kalogiannis, K. G., L. Matsakas, J. Aspden, A. A. Lappas, U. Rova, and P. Christakopoulos. 2018. Acid assisted organosolv delignification of beechwood and pulp conversion towards high concentrated cellulosic ethanol via high gravity enzymatic hydrolysis and fermentation. Molecules 23(7):1–18.

Kementerian Perindustrian. 2017. Gambaran Sekilas Industri Kakao. Departemen Perindustrian:5–8.

Kundu, C., and J. W. Lee. 2015. Optimization conditions for oxalic acid pretreatment of deacetylated yellow poplar for ethanol production. Journal of Industrial and Engineering Chemistry 32:298–304.

Li, S., D. Zhu, K. Li, Y. Yang, Z. Lei, and Z. Zhang. 2013. Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Industrial Engineering 2013:1–8.

Lu, X., B. Xi, Y. Zhang, and I. Angelidaki. 2011. Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technology 102(17):7937–7940.

Mardawati, E., A. Werner, T. Bley, K. Mtap, Setiadi, and Tjandra. 2014. The Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunches to Xylose. Journal of the Japan Institute of Energy 93(10):973–978.

Montgomery, D. C. 2013. Design and Analysis of Experiments Eighth Edition. Arizona State University. Page Copyright. Eight Edit.

Muharja, M., R. F. Darmayanti, B. Palupi, I. Rahmawati, B. A. Fachri, F. A. Setiawan, H. W. Amini, M. F. Rizkiana, A. Rahmawati, A. Susanti, and D. K. Y. Putri. 2021. Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk. Bulletin of Chemical Reaction Engineering & Catalysis 16(1):31–43.

Nazir, N., Novelina, E. Juita, C. Amelia, and R. Fatli. 2016a. Optimization of pre-treatment process of cocoa pod husk using various chemical solvents. International Journal on Advanced Science, Engineering and Information Technology 6(3):403–409.

Nazir, N., Novelina, E. Juita, C. Amelia, and R. Fatli. 2016b. Optimization of Pre-treatment Process of Cocoa Pod Husk Using Various Chemical Solvents. nternational Journal on Advanced Science, Engineering and Information Technology 6(3):403–409.

Nocedal, J., and S. J. Wright. 2000. Numerical Optimization. Page Physical Review.

Nurika, I., Z. A. N. M. Majid, and Suprayogi. 2021. The identification of ethanol and aromatic compounds from delignification of cacao pod husk using Phlebia sp.MG-60. IOP Conference Series: Earth and Environmental Science 733(1).

Pangestu, R., S. Amanah, A. B. Juanssilfero, Yopi, and U. Perwitasari. 2020. Response surface methodology for microwave-assisted extraction of pectin from cocoa pod husk (Theobroma cacao) mediated by oxalic acid. Journal of Food Measurement and Characterization 14(4):2126–2133.

Puligundla, P., S. E. Oh, and C. Mok. 2016. Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: A review. Carbon Letters 17(1):1–10.

Ramaiah, S. K., G. S. Thimappa, L. K. Nataraj, and P. Dasgupta. 2020. Optimization of oxalic acid pre-treatment and enzymatic saccharification in Typha latifolia for production of reducing sugar. Journal of Genetic Engineering and Biotechnology 18(1):0–8.

Rambat, N. Hidayat, and B. Rusdiarso. 2015. Aplikasi Limbah Kulit Buah Kakao Sebagai Media Fermentasi Asam Laktat Untuk Bahan Baku Bioplastik.

Sandesh, K., R. Shishir, and R. C.V. 2020. Optimization and Comparison of Induction Heating and LPG Assisted Acid Pretreatment of Cocoa Pod for ABE Fermentation. Fuel.

Sar, T., V. H. Arifa, M. R. Hilmy, J. A. Ferreira, R. Wikandari, R. Millati, and M. J. Taherzadeh. 2022. Organosolv pretreatment of oat husk using oxalic acid as an alternative organic acid and its potential applications in biorefinery. Biomass Conversion and Biorefinery.

Shet, V. B., N. sanil, M. Bhat, M. Naik, L. N. Mascarenhas, L. C. Goveas, C. V. Rao, P. Ujwal, K. Sandesh, and A. Aparna. 2018. Acid hydrolysis optimization of cocoa pod shell using response surface methodology approach toward ethanol production. Agriculture and Natural Resources 52(6):581–587.

Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74(10):3583–3597.

DOI

https://doi.org/10.21107/agrointek.v17i4.15471

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Ahmad Fadhlul Kamal, Efri Mardawati, Eko Heri Purwanto, S. Rosalinda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.