The effect of storage temperature on chilli pepper condiment shelf life and quality

Adetiya Irawan, Dessy Agustina Sari

Abstract

This study investigates the shelf life of Sambal Goang, a popular Indonesian chili pepper-based condiment, under different storage temperatures using the Accelerated Shelf Life Testing (ASLT) method. The increasing demand for chili peppers and the need for effective preservation methods prompted this research. The research stored the samples at 4°C and 30°C, conducting sensory evaluations over 30 days to assess texture, aroma, appearance, and color. Results showed significant quality degradation at 30°C, with rapid mold growth and rancidity. In contrast, samples stored at 4°C maintained better sensory attributes, extending the shelf life to 30 days compared to 24 days at 30°C. The study highlights the critical role of temperature in preserving the quality and extending the shelf life of Sambal Goang, offering practical insights for producers to enhance product safety, reduce waste, and improve economic returns for chili pepper farmers and sambal producers. These findings contribute to the advancement of food preservation strategies, promoting the viability of traditional culinary products in modern markets.

Keywords

Accelerated shelf life testing; Preservation; Sambal goang; Sensory evaluation; Storage temperature

Full Text:

PDF

References

Abubakar, A., Abdurrahma, M., Sulandjari, K., Arsyirakhmatika, G.A., and Sari, D.A., 2024. Feasibility and development strategies for mangrove fruit-based products in Karawang, West Java. IJDNE 19, 415–423. https://doi.org/10.18280/ijdne.190207

Basak, S., 2018. Shelf life extension of tomato paste through organoleptically acceptable concentration of betel leaf essential oil under accelerated storage environment. Journal of Food Science 83, 1396–1403. https://doi.org/10.1111/1750-3841.14133

Belisle, C.E., Sargent, S.A., Brecht, J.K., Sandoya, G.V., and Sims, C.A., 2021. Accelerated shelf-life testing to predict quality loss in romaine-type lettuce. Horttechnology 31, 490–499. https://doi.org/10.21273/horttech04812-21

Calligaris, S., Manzocco, L., Anese, M., and Nicoli, M.C., 2015. Shelf-life assessment of food undergoing oxidation–a review. Critical Reviews in Food Science and Nutrition 56, 1903–1912. https://doi.org/10.1080/10408398.2013.807222

Conte, L.S., Milani, A., Calligaris, S., Rovellini, P., Lucci, P., and Nicoli, M.C., 2020. Temperature dependence of oxidation kinetics of extra virgin olive oil (EVOO) and shelf-life prediction. Foods 9, 295. https://doi.org/10.3390/foods9030295

Corrigan, V.K., Hedderley, D., and Harvey, W., 2012. Modeling the shelf life of fruit‐filled snack bars using survival analysis and sensory profiling techniques. Journal of Sensory Studies 27, 403–416. https://doi.org/10.1111/joss.12006

Dawson, P., Al‐Jeddawi, W., and Remington, N., 2018. Effect of freezing on the shelf life of salmon. International Journal of Food Science 2018, 1–12. https://doi.org/10.1155/2018/1686121

Du, X., Wang, B., Li, H., Liu, H., Shi, S., Feng, J., Pan, N., and Xia, X., 2022. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Comprehensive Reviews in Food Science and Food Safety 21, 4812–4846. https://doi.org/10.1111/1541-4337.13040

Eurofins, E., 2024. Accelerated shelf life studies (ASLS) [WWW Document]. Food and Feed Testing. URL https://www.eurofins.in/food-testing/blog/accelerated-shelf-life-studies-asls/

Fardiansyah, M.I., Sari, D.A., Firdaus, M.A., and Ulfa, V.S., 2023. Pengembangan label kemasan botol pada produk bubuk jahe merah. Martabe: Jurnal Pengabdian Masyarakat 6, 3033–3038. https://doi.org/10.31604/jpm.v6i9.3033-3038

Fauzia, F., Kamil, M.I., Savitri, M.D., Dhiya, S., Suherman, M., Ratnasari, Y., Malik, L.A., Marendra, A.G., Wibowo, L.K., Sinabutar, K.V., Sari, D.A., Hasyim, M., and Sukanta, S., 2023. Strategi usaha mikro kecil menengah (UMKM) kuliner lokal dalam menghadapi kompetisi global. Martabe: Jurnal Pengabdian Masyarakat 6, 2977–2985. https://doi.org/10.31604/jpm.v6i8.2977-2985

Hao, F., Lu, L., and Wang, J., 2015. Finite element simulation of shelf life prediction of moisture-sensitive crackers in permeable packaging under different storage conditions. Journal of Food Processing and Preservation 40, 37–47. https://doi.org/10.1111/jfpp.12581

Haouet, M.N., Tommasino, M., Mercuri, M.L., Benedetti, F., Bella, S.D., Framboas, M., Pelli, S., and Altissimi, M.S., 2019. Experimental accelerated shelf life determination of a ready-to-eat processed food. Italian Journal of Food Safety 7, 189–192. https://doi.org/10.4081/ijfs.2018.6919

Hasbullah, R., and Ismail, E.R., 2022. Shelf-life prediction of citrus lemon using a multivariate accelerated shelf-life testing (MASLT) approach. Journal of Horticultural Research 30, 51–60. https://doi.org/10.2478/johr-2022-0005

Hayes, R.J., and Liu, Y.-B., 2008. Genetic variation for shelf-life of salad-cut lettuce in modified-atmosphere environments. Journal of the American Society for Horticultural Science 133, 228–233. https://doi.org/10.21273/jashs.133.2.228

Hough, G., and Garitta, L., 2012. Methodology for sensory shelf‐life estimation: A review. Journal of Sensory Studies 27, 137–147. https://doi.org/10.1111/j.1745-459x.2012.00383.x

Kumar, D., and Kalita, P.K., 2017. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6, 8. https://doi.org/10.3390/foods6010008

Manzocco, L., Kravina, G., Calligaris, S., and Nicoli, M.C., 2008. Shelf life modeling of photosensitive food: The case of colored beverages. Journal of Agricultural and Food Chemistry 56, 5158–5164. https://doi.org/10.1021/jf800072u

Manzocco, L., Panozzo, A., and Calligaris, S., 2011. Accelerated shelf life testing (ASLT) of oils by light and temperature exploitation. Journal of the American Oil Chemists Society 89, 577–583. https://doi.org/10.1007/s11746-011-1958-x

Martins, R.C., Lopes, V.V., Vicente, A.A., and Teixeira, J.A., 2008. Computational shelf-life dating: complex systems approaches to food quality and safety. Food and Bioprocess Technology 1, 207–222. https://doi.org/10.1007/s11947-008-0071-0

Meeker, W.Q., Escobar, L.A., and Lu, C.J., 1998. Accelerated degradation tests: Modeling and analysis. Technometrics 40, 89–99. https://doi.org/10.1080/00401706.1998.10485191

Mizrahi, S., 2011. Accelerated shelf life testing of foods, in: Food and Beverage Stability and Shelf Life. Elsevier, pp. 482–506. https://doi.org/10.1533/9780857092540.2.482

Naufalin, R., Ritonga, A.M., and Denonita, N., 2023. Accelerated shelf-life testing of the powder of flower, leaf, and steam kecombrang (Etlingera elatior) using a critical moisture content approach, in: Proceedings of the 3rd International Conference on Sustainable Agriculture for Rural Development (ICSARD 2022). Atlantis Press, pp. 294–306. https://doi.org/10.2991/978-94-6463-128-9_30

Naulina, R.Y., Stiawan, E., Nendissa, S.J., Nendissa, D.M., Sari, D.A.S., Ariyanti, D., Sulistyo, A.B., Siahaya, A.N., Fatnah, N., Rahim, H., Rosmawati, A., Khurniyati, M.I., and Fahmi, A., 2023. Kimia industri. Penerbit Widina Media Utama, Bandung.

Ninsix, R., Azima, F., Novelina, N., and Nazir, N., 2018. Metode penetapan titik keritis, daya simpan dan kemasan produk instan fungsional. jtp 7, 46–52. https://doi.org/10.32520/jtp.v7i1.112

Nulfaidah, F., and Sari, D.A., 2024. Penataan manajemen produksi dan proses pemanggangan bagi UMKM Opak Ketan. Martabe: Jurnal Pengabdian Masyarakat 7, 54–62.

Odeyemi, O.A., Alegbeleye, O.O., Strateva, M., and Stratev, D., 2020. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety 19, 311–331. https://doi.org/10.1111/1541-4337.12526

Park, J.M., Koh, J.-H., and Kim, J.M., 2018. Predicting shelf-life of ice cream by accelerated conditions. Korean Journal for Food Science of Animal Resources 38, 1216–1225. https://doi.org/10.5851/kosfa.2018.e55

Pedro, A.M.K., and Ferreira, M.M.C., 2006. Multivariate accelerated shelf‐life testing: A novel approach for determining the shelf‐life of foods. Journal of Chemometrics 20, 76–83. https://doi.org/10.1002/cem.995

Perumalla, A.V.S., and Hettiarachchy, N., 2011. Green tea and grape seed extracts — potential applications in food safety and quality. Food Research International 44, 827–839. https://doi.org/10.1016/j.foodres.2011.01.022

Richards, M., Kock, H.L.D., and Buys, E.M., 2014. Multivariate accelerated shelf-life test of low fat uht milk. International Dairy Journal 36, 38–45. https://doi.org/10.1016/j.idairyj.2013.12.012

Sari, D., and Hadiyanto, H., 2013. Teknologi dan metode penyimpanan makanan sebagai upaya memperpanjang shelf life. Jurnal Aplikasi Teknologi Pangan 2, 52–59.

Sari, D.A., Djaeni, M., Hakiim, A., Sukanta, S., Asiah, N., and Supriyadi, D., 2018. Enhancing quality of drying mixed shrimp paste from Karawang with red pigment by angkak. JTS 29, 72–75. https://doi.org/10.12962/j20882033.v29i2.3575

Sari, D.A., Hakiim, A., Efelina, V., Djaeni, M., and Hadiyanto, H., 2020a. Studi kasus: optimisasi teknik pengadukan, pembentukan gulungan, dan kemasan produk dodol di kabupaten Bekasi. agrointek 14, 148–156. https://doi.org/10.21107/agrointek.v14i2.6408

Sari, D.A., Hakiim, A., Irawan, R., and Dewi, R., 2020b. Penataan ulang area produksi industri rumah tangga kabupaten bekasi. PPM 4, 53–62. https://doi.org/10.29407/ja.v4i1.14602

Shahidi, F., 2000. Antioxidants in food and food antioxidants. Nahrung/Food 44, 158–163. https://doi.org/10.1002/1521-3803(20000501)44:3<158::aid-food158>3.0.co;2-l

Sulaiman, I., 2024. Shelf-life prediction of nutmeg candy (Myristica fragrans Houtt) using the Arrhenius equation approach’s accelerated shelf-life testing (ASLT) method. IOP Conference Series Earth and Environmental Science, p. 012001. https://doi.org/10.1088/1755-1315/1290/1/012001

Ulfa, V.S., Fardiansyah, M.I., Firdaus, M.A., and Sari, D.A., 2022. Peran transformasi kemasan pada produk bubuk jahe merah (botol ke standing pouch). Jurnal Qardhul Hasan: Media Pengabdian kepada Masyarakat 8, 1–7.

Wei, F., 2024. Preparation of Astragalus membranaceus–cranberry Biscuits and the evaluation of physicochemical properties and antioxidant activity. International Journal of Food Science & Technology 59, 3134–3141. https://doi.org/10.1111/ijfs.17057

DOI

https://doi.org/10.21107/agrointek.v19i4.25974

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Adetiya Irawan, Dessy Agustina Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.