Enhancing the Quality of Compost from Oil Palm Residue by Inoculating Nitrogen-Fixing Bacteria: Impact on Brassica rapa v. chinensis Growth

Sylvia Madusari, Zakat Firmanto


Oil palm empty fruit bunches (OPEFB) are by-products of the processing of oil palm mills. The addition of nitrogen-fixing microorganisms is carried out to improve nitrogen content in OPEFB compost and it can be used as a growing medium to increase the quality of vegetable crops. The aim of this study is to analyse the potential of empty fruit bunch composts enriched with Azotobacter for improving pak choi (Brassica rapa v. chinensis) growth. The process involved the conversion of OPEFB by fortifying it with Azotobacter into value-added composts. Temperature, pH, conductivity, and nutrient characteristics of composts were analyzed during the composting process. The Completely Randomized Design was conducted to observe the potential of Azotobacter-fortified composts on pak choi growth. The growing media made in seven combinations, namely: F0: 100% soil (control); T1P1: 30% OPEFB composts + 70% soil; T1P2: 50% OPEFB composts + 50% soil; T1P3: 70% OPEFB composts + 30% soil; T2P1: 28% OPEFB composts + 2% Azotobacter sp. + 70% soil; T2P2: 48% OPEFB composts + 2% Azotobacter sp. + 50% soil; T2P3: 68% OPEFB composts + 2% Azotobacter sp. + 30% soil. The research revealed that the highest pH and conductivity values are 8.46 and 1.16 mS.cm-1, which occurred in Azotobacter assisted OPEFB composting. In the application of the compost as the growing media for pak choi, the morphological parameter showed significant effects. The Azotobacer assisted compost promoted significant increase in plant height (23,7 cm), root dry weight (2,84 g), shoot dry weight (2,39 g), root length (28,56 cm), leaf area (73,37 cm2), and number of stomata (36,70 cm-1).


Azotobacter; decomposition; empty fruit bunch; solid waste

Full Text:



A. Alfalahi, A., M. Karim Al-Abodi, H., K. Abdul Jabbar, B., M. Muhdi, A., & A. Sulman, K. 2015. Scheduling Irrigation as a Water Saving Practice for Corn (Zea mays L.) production in Iraq. International Journal of

Applied Agricultural Sciences, 1(3), 55–59. https://doi.org/10.11648/j.ijaas.20150103.12

Afrilandha, N., Mieke Rochimi Setiawati. 2018. The Effect of Inorganic Nutrients and Biofertilizer on The Population of Azotobacter sp., Chlorophyll Content, Nitrogen Uptakes, and Yield of Tomatoes Plants in Hydroponic. 22(1), 1410–1439.

Al-Khazrji, O. A. R., Al-Saedi, S. A., & Alkhateb, B. A. A. H. 2020. Leaf Area, Proline and Relative Water Content In The Leaves Of Maize Plant Under The Effect Of Soil Bacteria, Organic Matter and Water Stress. Plant Archives, 20(2), 405–412.

Almeida, J., Da Silva Azevedo, M., Spicher, L., Glauser, G., Vom Dorp, K., Guyer, L., Del Valle Carranza, A., Asis, R., De Souza, A. P., Buckeridge, M., Demarco, D., Bres, C., Rothan, C., Peres, L. E. P., Hörtensteiner, S., Kessler, F., Dörmann, P., Carrari, F., & Rossi, M. 2016. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner. Journal of Experimental Botany, 67(3), 919–934. https://doi.org/10.1093/jxb/erv504

Arbaain, E. N. N., Bahrin, E. K., Ibrahim, M. F., Ando, Y., & Abd-Aziz, S. 2019. Biological pretreatment of oil palm empty fruit bunch by Schizophyllum commune ENN1 without washing and nutrient addition. Processes, 7(7). https://doi.org/10.3390/pr7070402

Azlansyah, B. A., Silvina, F., & Murniati, I. 2014. Pengaruh Lama Pengomposan Tandan Kosong Kelapa Sawit (TKKS) Terhadap Pertumbuhan Dan Perkembangan Bibit Kelapa Sawit (Elaeis guineensis Jacq). Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 1(1), 1–12.

Chen, L., de Haro Marti, M., Moore, A., & Falen, C. 2011. The Composting Process. University of Idaho, 1–5. https://www.extension.uidaho.edu/publishi ng/pdf/CIS/CIS1179.pdf

Edi, S., & Bobihoe, J. 2010. Budidaya Tanaman Sayuran. In Journal of Chemical Information and Modeling Vol. 53: 9. http://dergipark.gov.tr/cumusosbil/issue/43 45/59412

Ewusi-Mensah, N., Mensah, P. W., Logah, V., Ofori, P. 2020. Compost inoculated with Azotobacter sp: impact assessment on

eggplant (Solanum melongena) productivity and soil nutrient status in Ghana. Agronomy Journal, 112(4), 2664– 2675. https://www.tandfonline.com/doi/full/10.1080/03650340.2019.1608526?scroll=top& needAccess=true

Hanudin, E., Kautsar, V., Z, I. A., & Yuwono, N. W. 2010. Karakteristik Kimia, Potensi dan Sebaran Bahan Pupuk Organik dan Mineral di Daerah Istimewa Yogyakarta. Jurnal Ilmu Tanah Dan Lingkungan, 10(2), 93–100.

Haryanti, A., Suci Fanny Sholiha, P., Pralisa Putri, N. 2014. STUDI PEMANFAATAN LIMBAH PADAT KELAPA SAWIT. Konversi, 3(2), 20–29.

Hashemniya, P., Sharifi, P., & Aminpanah, H. 2015. Effect of Azotobacter and Chemical Phosphorus Fertilizer on Maize. Jordan

Journal of Agricultural Sciences, 11(3), 789–802. https://doi.org/10.12816/0030107

Isroi. 2009. Pupuk Organik Granul: sebuah Petunjuk Praktis.

https://play.google.com/books/reader?id=7 sZaDwAAQBAJ&pg=GBS.PR1&hl=en

Jnawali, A. D., Ojha, R. B., & Marahata, S. 2015. Evaluation of Maize Nutrient Contents in a Maize/Cowpea Intercropping Systems in South Africa. Advances in Plants & Agriculture Research, 2(6), 1–5.

https://doi.org/10.15406/apar.2015.02.000 69

Kader, M. ., Mamun, A. A., Hossain, S. M. ., Hasna, M. . 2000. Effects of Azotobacter Application on the Growth and Yield of Transplant Aman Rice and Nutrient Status of Post-harvest Soil. Pakistan Journal of

Biological Sciences, 3(7), 1144–1147. https://doi.org/10.3923/pjbs.2000.1144.1147

Karnchanawong, S., & Nissaikla, S. 2014. Effects of microbial inoculation on composting of household organic waste using passive aeration bin. International Journal of Recycling of Organic Waste in

Agriculture, 3(4), 113–119. https://doi.org/10.100 /s40093-014-0072-0

Kavitha, R., Subramanian, P. 2007. Bioactive Compost - A Value Added Compost with Microbial Inoculants and Organic

Additives. Journal of Applied Sciences, 7, 2514–2518.

Kaya, C., Higgs, D. 2003. Supplementary potassium nitrate improves salt tolerance in bell pepper plants. Journal of Plant Nutrition, 26(7), 1367–1382. https://doi.org/10.1081/PLN-120021048

Kumar, J., Phookan, D., Lal, N., Kumar, H., Sinha, K., Hazarika, M. 2015. Effect of organic manures and biofertilizers on nutritional quality of cabbage (Brassica oleracea var. capitata). Journal of Eco-

Friendly Agriculture, 10(2), 114–119. https://www.researchgate.net/publication/3 14116640

Madusari, S. (2015). Kajian Kapasitas Tukar Kation (KTK) Dan Rasio C/N Pada Aplikasi Pupuk Cair Bonggol Pisang (MUSA SP.) dan Mikoriza di Pembibitan Awal Tanaman Kelapa Sawit (Elaeis

guineensis Jacq.). Jurnal Citra Widya Edukasi, 7(2), 45–55.

Madusari, S., Firmanto, Z., & Sinuraya, R. (2020). Oil Palm Pressed Fiber Valorization: Improving Fiber Processing in Composting with Azotobacter for Use in Potting Media of Brassica rapa. Journal of Applied Science and Advanced Technology, 2(3), 65–72. https://doi.org/10.24853/JASAT.2.3.65-72

Mahato, S., Neupane, S. 2018. Comparative study of impact of Azotobacter and Trichoderma with other fertilizers on maize

growth. Journal of Maize Research and Development, 3(1), 1–16.


Mar, T. T., Kyaw, E. P., Lynn, T. M., & Ko, Z. 2018. The Effects of Compost Based Biofertilizer on Eggplant ( Solanum

melongena L .) Growth. International Journal of Plant Biology & Research, 6.

Permentan. 2011. Peraturan Menteri Pertanian Nomor 70/Peraturan Menteri Pertanian Republik Indonesia/SR.140/10/2011 Tentang Pupuk Organik, Pupuk Hayati Dan Pembenah Tanah. In Permentan (p. 16).

Rahayu, F. P. 2017. Viabilitas Biofertilizer Berbahan Baku Azotobacter Pada Media Pembawa Padat Berbentuk Granul.

Rahman, M. A., Rahman, M. M., Begum, M. F., Alam, M. F. 2012. Effect of bio compost, cow dung compost and NPK fertilizers ongrowth , yield and yield components of chili. 2(1), 51–55.

Rodrigues, M. Â., Ladeira, L. C., & Arrobas, M. 2018. Azotobacter-enriched organic manures to increase nitrogen fixation and

crop productivity. European Journal of Agronomy, 93, 88–94.


Sahwan, F. 2016. Assess the Applicability of Composting Technology for Beef Cattle Waste Handling. Jurnal Teknologi Lingkungan, 17(2), 92–99.

Sethi, K. S., Adhikary, S. P. 2012. Azotobacter: A Plant Growth-Promoting Rhizobacteria Used as Biofertilizer. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 6(1), 68–74.

Singh, D. P., Prabha, R., Renu, S., Sahu, P. K., Singh, V. 2019. Agrowaste bioconversion and microbial fortification have prospects

for soil health, crop productivity, and eco-enterprising. In International Journal of Recycling of Organic Waste in Agriculture

(Vol. 8, pp. 457–472). Springer. https://doi.org/10.1007/s40093-019-0243-0

Song Ai, N., & Yunia Banyo, D. 2011. Konsentrasi Klorofil Daun Sebagai Indikator Kekurangan Aiar Pada Tanaman. Jurnal Ilmiah Sains, 11(2), 166–173.

Stichnothe, H., Schuchardt, F. 2010. Comparison of different treatment options for palm oil production waste on a life cycle

basis. The International Journal of Life Cycle Assessment, 15(9), 907–915. https://doi.org/10.1007/s11367-010-0223-0

Sulaeman, Suparto, Eviati, Prasetya, B., Santoso,D., Widowati, L., Aprillani, S., & Manalu,F. 2005. Analisis Kimia Tanah, Tanaman,

Air, dan Pupuk. In Balai Penelitian Tanah, Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian.

Sundberg, C., Smars, S., Johnsson, H. 2004. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource Technology, 95(2), 145–150.


Van Oosten, M. J., Di Stasio, E., Cirillo, V., Silletti, S., Ventorino, V., Pepe, O., Raimondi, G., Maggio, A. 2018. Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to

salt stress under low N conditions. BMC Plant Biology, 18(1), 1–12.






  • There are currently no refbacks.

Copyright (c) 2021 Sylvia Madusari, Zakat Firmanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.