Syifa Robbani, Farah Fahma, Sugiarto Sugiarto


The advancement of active packaging technology has contributed to the need for customer assurance of the quality and protection of fresh foods and agricultural products. An example of active packaging to maintain food quality and improve product protection is the use of antimicrobial pads. Antimicrobial pads are a type of active packaging that releases active agents into the headspace food packaging in order to prevent, inhibit or destroy the growth of microorganisms.. Antimicrobial pads are very easy to apply to food products by placing them on the bottom of the product or inserting them into the packaging material. This literature study discusses the characterization of cellulose as a major component in the manufacture of pads, techniques for the incorporation of antimicrobial compounds into pads, and suitable applications for the inhibition of microorganisms in food products. Apart from that, this literature study also discusses the advantages and disadvantages of antimicrobial pads as active packs.


active packaging; quality; products; and active compounds

Full Text:



Aditiawati P, Dungani R, Aprilia S, Yuniarti K, Karliati T, Suwandhi T, Sumardi I. 2018. Biomaterial from oil palm waste: properties, characterization and applications. DOI: 10.5772/intechopen.76412

Adnan S, Azhar A H, Jasmani L, Samsudin M L. 2018. Properties of paper incorporated with nanocellulose extracted using microbial hydrolysis assisted shear process. IOP Conference Series: Materials Science and Engineering. The Wood and Biofiber International Conference (WOBIC 2017).

Agrimontia C, Jason C, Whiteb, Tonettic S, Marmiroli N. 2019. Antimicrobial activity of cellulosic pads amended with emulsions of essential oils of oregano, thyme and cinnamon against microorganisms in minced beef meat. International Journal of Food Microbiology 305 (2019) 108246.

Ahvenainen R. 1996. New approaches in improving the shelf life of minimally processed fruit and vegetables. Trends in Food Science & Technology. Volume 7, Issue 6, June 1996, Pages 179-187

Aragüez L, Colomboa A, Borneoa R, dan Aguirrea A. 2020. Active packaging from triticale flour films for prolonging storage life of cherry tomato. Food Packaging and Shelf Life 25 (2020) 100520. https://doi.org/10.1016/j.fpsl.2020.100520

Biji K B, Ravishankar C N, Mohan C O, Srinivasa G T K. 2015. Smart packaging systems for food applications: A review. Journal of Food Science and Technology, 52(10), 6125–6135.

Bodbodak S, Rafiee Z. 2016. Recent trends in active packaging in fruits and vegetables. Eco-friendly technology for postharvest produce quality. Elsevier 77–125. https://doi.org/10.1016/B978-0-12-804313-4.00003-7

Boruvkova K, Wiener J. 2011. Water absorption in carboxymethyl cellulose. Autex Res J 11:110–113

Bovi G G, Oluwafemi J, Caleb, Klaus E, Tintchev F, Rauh C, Mahajan P V . 2017. Moisture Absorption Kinetics of FruitPad for Packaging of Fresh Strawberry, Journal of Food Engineering (2017), doi: 10.1016/j.jfoodeng.2017.10.012.

Cacicedo M L, Castro M C, Servetas I, Bosnea L, Boura K, Tsafrakidou P, Dima A, Terpou A, Koutinas A, Castro GR. 2016. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol 213:172–180

Camo J, Beltrán J A, Roncalés P. 2008. Extension of the display life of lamb with an antioxidant active packaging Meat Sci., 80 (2008), pp. 1086-1091, 10.1016/j.meatsci.2008.04.031

Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L. 2008. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460

Dewi S, Khaswar S, Warsiki E, Fahma F. 2020. Rancangan Matriks Saset Antimikroba dari Bead Komposit Alginat-Selulosa Nanokristal untuk slow-release senyawa aktif eugenol. Disertasi [IPB]. Bogor.

Fahma F, Hori N, Iwata T, Takemura A. 2013. Preparation and Characterization of Polychloroprene Nanocomposites with Cellulose Nanofibers from Oil Palm Empty Fruit Bunches as a Nanofiller. J. APPL. POLYM. SCI. 2014, DOI: 10.1002/APP.40159

Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. 2010. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–85. doi:10.1007/s10570-010-9436-4.

Fang Z, Zhao Y, Warner R D, Johnson S K.2017. Active and intelligent packaging in meat industry. Trends in Food Science & Technology 61 (2017) 60e71.

Fernández A, Picouet P, Lloret E. 2010. Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. Journal of Food Protection, 73(12), 2263–2269.

Fernández A, Soriano E, López-Carballo G, Picouet P, Lloret E, Gavara R, Hernández-Muñoz P. 2009. Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Research International, 42, 1105–1112.

Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H. 2013 Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14(6):1741–1750

Gaikwad K, Singh A, Ajji A. 2018. Moisture absorbers for food packaging applications. Environmental Chemistry Letters https://doi.org/10.1007/s10311-018-0810-z

Gontard N. 2007. Antimicrobial paper based packaging. In International antimicrobial

Gumiero M. 2009. Innovative active packaging for food products: Research and developments. In: 14th workshop on the developments in the Italian Ph.D research on food science technology and biotechnology—University of Sassari, Oristano. 16–18 September 2009.

Han J H. 2005. Antimicrobial packaging systems. In J. H. Han (Ed.), Innovations in food packaging (pp. 80e107). Amsterdam, The Netherlands: Elsevier Academic Press.

He J, Kunitake T, Nakao A, 2003. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chemical Materials 15, 4401–4406.

Jannatyhaa N, Shojaee-Aliabadib S, Moslehishadc M, Moradi M. 2020. Comparing mechanical, barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. International Journal of Biological MacromoleculesVolume 164, 1 December 2020, Pages 2323-2328

Jensen R, Versteylen S. 2013. Food package for cut produce. US Patent 2013/0095215 A1.

King A D. and Bolin H R. 1989. Physiological and microbiological storage stability of minimally processed fruits and vegetables. Food. Technol., 43: 132-139.

Kuswandi B, Jumina. 2020. Active and intelligent packaging, safety, and quality controls. Elsevier. https://doi.org/10.1016/B978-0-12-816184-5.00012-4

Lehninger, A. L. 1993. Dasar-dasar biokimia. Jilid 3. Erlangga. Jakarta

Martins N C, Freire C S, Neto C P, Silvestre A J, Causio J, Baldi G. 2013. Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 417, 111e119.

Martini R J A, Nairm J, Simonsen, Youngblood J. 2011. Cellulose nanomaterials review:structure, properties and nanocomposites. RSC 40:3947-3950.

Muthuraj R, Misra M, Mohanty A K. 2018. Biodegradable compatibilized polymerblends for packaging applications: a literature review, J. Appl. Polym. Sci.135 (2018) 45726, http://dx.doi.org/10.1002/app.45726.

Nascimento D M, Nunes Y L, Figueirêdo M C B, de Azeredo H M C, Aouada FA, Feitosa J P A, Rosa M F, Dufresne A. 2018. Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry Issue 11, 2018.

Nobel A. 2000. Wound dressings and materials suitable for use therein. WO00/01425.

Oral N, Vatansever L, Sezer Ç, Aydın B, Güven A, Gülmez M, Kürkçüoğlu M. 2009. Effect of absorbent pads containing oregano essential oil on the shelf life extension of overwrap packed chicken drumsticks stored at four degrees Celsius. Poultry Science, 88, 1459–1465.

Otoni, C G, Espitia P J P, Avena-Bustillos R J, McHugh T H. 2016. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International 83 (2016) 60–73

Paig-Tran E W M., Kleinteich T, Summers A P. 2013. The Filter Pads and Filtration Mechanisms of the Devil Rays: Variation at Macro and Microscopic Scales. Journal of Morphology. 00:00-00. 2013.

Papkov D Y, Zou M N, Andalib A, Goponenko S Z D, Cheng Y A, Dzenis. 2013. Simultaneously strong and tough ultrafine continuous nanofibers, ACS Nano 7 (2013) 3324–3331.

Pinming C, Sukgorn N, Suhatcho T. 2016. Humidity sensor using carboxymethyl cellulose hydrogel membrane. In: 2016 13th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE. https ://doi.org/10.1109/ECTICon.2016.75614 35

Qian L, Guan Y, He B, Xiao H. 2008. Synergy of wet strength and antimicrobial activity of cellulose paper induced by a novel polymer complex. Mater. Lett. 2008, 62, 3610–3612. [CrossRef]

Realini C E, Marcos B. 2014. Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404e419.

Rollinia M, Mascheronia E, Caprettib G, Comac V, Musattia A, Piergiovannia L. 2017. Propolis and chitosan as antimicrobial and polyphenols retainer for the development of paper based active packaging materials. Food Packaging and Shelf Life 14 (2017) 75–82

Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA. 2005. Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Florida, p 37

Shankar S, Rim J W. 2017. Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads. Carbohydrate Polymers. http://dx.doi.org/10.1016/j.carbpol.2017.01.059.

Tarrés Q, Oliver-Ortega H, Llop M, Pèlach M À, Delgado-Aguilar M, Mutjé P. 2016. Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose, 23(5), 3077–3088.

Versteylen S, Beu R, Stoll B N. 2015. Absorbent food pad having discrete airflow passages. US Patent 2015/0017380 A1.

Yildirim S U, Rocker B. 2018. Nanomaterials for Food Packaging. https://doi.org/10.1016/B978-0-323-51271-8.00007-3

Zahra M, Jafari S M. 2020. Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Advances in Colloid and Interface Science (2020), https://doi.org/10.1016/j.cis.2020.102297

Zemljic L F., Valh J V dan Kreže T. 2015. Preparation of Antimicrobial Paper Sheets Using Chitosan. Cellulose Chemistry And Technology.

Zhang H, Gu W, Li M J, Li Z Y, Hu Z J, Tao W Q. 2014. Experimental study on the kinetics of water vapor sorption on the inner surface of silica nano-porous materials. International Journal of Heat and Mass Transfer, 78, 947–959. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.047





  • There are currently no refbacks.

Copyright (c) 2021 Syifa Robbani, Farah Fahma, Sugiarto Sugiarto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.