Optimasi proses degumming minyak sawit mentah (DRPO) dengan response surface methodology (RSM) berbasis central composte design (CCD)

Jefri Pandu Hidayat, Rizka Lestari, Siti Munfarida, Andini Angelina Putri, Adrian Prananda Putra, Fidela Chosta, Ahmad Maulidi

Abstract

Crude palm oil (CPO) is widely used in various processed food products, especially cooking oil. Refining cooking oil involves high heating temperatures and the addition of bleaching earth, which aims to remove the sap and brown-red color. As a result, it can eliminate the carotene, which is not functionally used for good human metabolism. This research aims to remove sap and impurities in CPO by analyzing the optimal operation of heating temperature (60-80 °C) and phosphoric acid concentration (0.5-2 ml) and comparing the functional group change on the degumming process. The analytical method used was Response Surface Technology (RSM) by Central Composite Design (CCD) at Design Expert 12, which used carotene, density, and free fatty acid (FFA) responses. The results are optimal variables on heating temperature 80 °C and 2 ml of phosphoric acid concentration. The result of %FFA in DRPO was 1.917 %, the carotene was 381,350 ppm, and the density was 0.909 g/l. Heating temperature influences the FFA content, which is an important consideration. Higher temperatures can lead to an increase in FFA content. Indeed, lipase activation significantly affects the FFA content by accelerating the enzyme-catalyzed reaction. Apart from that, the addition of phosphoric acid affects the increase in FFA due to the non-reaction of phosphoric acid. The physicochemical characteristics of palm oil after the degumming process have not changed significantly, with the density before and after the degumming process still being in the range of (0.909–0.912) g/l. Group bonds have no change because the C-H and C=O group bonds in the main triglyceride compound. It requires a lot of energy to break the triglyceride cluster chains. The preliminary FFA model was revealed y=0.169\left(T\right)-0.1064\left(V\right)-1.5 to degummed reactor design, further.

Keywords

Carotene; CPO; Degumming; Optimization; RSM

References

Arsanto, D. A., Pratama, D. W., Murti, S. D. S., Soraya, S., Widya. 2022. Penentuan tingkat efisiensi komposisi H3PO4 pada proses degumming dalam pembuatan pure plant oil dari crude palm oil off-grade. JIST, 3(7), 877–889.

Bhargava, N., Sharanagat, V. S., Mor, R. S., Kumar, K. 2020. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science and Technology, 105, 385–401. https://doi.org/10.1016/j.tifs.2020.09.015

Badan Pusat Statistik. 2023. Indonesian Oil Palm Statistics 2022.

Badan Standardisasi Nasional. 2019. SNI 7709:2019 Minyak Goreng Sawit, pp. 1–33.

Hidayat, J. P., Hariyadi, A., Chosta, F. 2022. Bentonite and RHA Adsorption Performance Against Characteristics Waste-Cooking Oil. J. Sains Dan Teknologi Pangan, 7(6), 5600–5614.

Hidayat, J. P., Munfarida, S., Hariyadi, A. 2024. Modified ganyong (Canna edulis Kerr.) starch prospective as wheat flour alternative. Food Research, 8, 11–17. https://doi.org/10.26656/fr.2017.8(S1).2

Hidayat, J. P., Putri, A. A., Munfarida, S., Kumoro, A. C. 2024. Kinetic bio - reaction modelling durian seed fused Lactobacillus plantarum suspension by high - order embedded runge - kutta. Food Research, 8, 1–10. https://doi.org/10.26656/fr.2017.8(S1).1

Hidayat, J. P., Romadhona, H. A., Sholihah, N., Munfarida, S. 2023. Aloe vera gel-based edible coating characterization by onion powder fortification method as an antimicrobial. Agrointek, 17(3), 493–501. https://doi.org/10.21107/agrointek.v17i3.14607

Husein, S. G., Firmansyah, A., Yusuf, F. F. 2020. Analisis kemometrika spektrum fourier transformed infrared (FTIR) dari minyak nabati. Jurnal Sains Dan Teknologi Farmasi Indonesia, 9(2), 45–55. https://doi.org/10.58327/jstfi.v9i2.189

Indriyani, D. M., Nurhasanah, Herasari, D. 2021. Optimization of lipase production from local bacteria isolate with palm oil inducer. Journal of Scientific and Applied Chemistry, 24(2), 58–61. https://doi.org/10.14710/jksa.24.2.58-61

Jamari, S. S., Howse, J. R. 2012. The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass and Bioenergy, 47, 82–90. https://doi.org/10.1016/j.biombioe.2012.09.061

Jin, Y., Teh, S. S., Yap, W. H., Lau, H. L. N., Mah, S. H. 2024. In vivo retinoid metabolic and visual cycle pathways assessment of carotenoid-rich refined red palm-pressed mesocarp olein. Journal of Functional Foods, 116, 106140. https://doi.org/10.1016/j.jff.2024.106140

Kumoro, A. C., Hidayat, J. P. 2018. Functional and thermal properties of flour obtained from submerged fermentation of durian (Durio zibethinus Murr.) seed chips using Lactobacillus plantarum. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 607–614. https://doi.org/10.5219/965

Kumoro, A. C., Mariana, S., Maurice, T. H., Hidayat, J. P. 2022. Pectin Derived from Hydrolysis of Ripe Kepok Kuning Banana Peel Powder Employing Crude Pectinases Produced by Aspergillus niger. Sains Malaysiana, 51(7), 2047–2059. https://doi.org/10.17576/jsm-2022-5107-09

Kumoro, A., Hidayat, J. 2018. Effect of soaking time in sodium metabisulfite solution on the physicochemical and functional properties of durian seed flour. MATEC Web of Conferences, 156, 1–5. https://doi.org/10.1051/matecconf/201815601028

Łaska-Zieja, B., Golimowski, W., Marcinkowski, D., Niedbała, G., Wojciechowska, E. 2020. Low-cost investment with high quality performance. Bleaching earths for phosphorus reduction in the low-temperature bleaching process of rapeseed oil. MDPI, 9(603). https://doi.org/10.3390/foods9050603

Lee, W. J., Tan, C. P., Sulaiman, R., Hee, Y. Y., Chong, G. H. 2020. Storage stability and degradation kinetics of bioactive compounds in red palm oil microcapsules produced with solution-enhanced dispersion by supercritical carbon dioxide: A comparison with the spray-drying method. Food Chemistry, 304. https://doi.org/10.1016/j.foodchem.2019.125427

Mayalibit, A. P., Sarungallo, Z. L., Paiki, S. N. 2019. The effect of degumming process using citric acid on the quality of red fruit oil (Pandanus conoideus Lamk.). Agritechnology, 2(1), 23–31. https://doi.org/10.51310/agritechnology.v2i1.25

Muñoz-Almagro, N., Vendrell-Calatayud, M., Méndez-Albiñana, P., Moreno, R., Cano, M. P., Villamiel, M. 2021. Extraction optimization and structural characterization of pectin from persimmon fruit (Diospyros kaki Thunb. var. Rojo brillante). Carbohydrate Polymers, 272, 118411. https://doi.org/10.1016/j.carbpol.2021.118411

Nidzam, M. S., Hossain, S., Ismail, N., Latip, R. A., Illias, M. K. M., Siddique, B. M., Zulkifi, M. 2022. Influence of the degumming process parameters on the formation of glyceryl esters and 3-MCPDE in refined palm: optimization and palm oil quality analyses. MDPI, 11(124). https://doi.org/10.3390/foods11010124

Sulihatimarsyila, A. W. N., Lau, H. L. N., Nabilah, K. M., Nur Azreena, I. 2020. Production of refined red palm-pressed fibre oil from physical refining pilot plant. Case Studies in Chemical and Environmental Engineering, 2, 100035. https://doi.org/10.1016/j.cscee.2020.100035

Nurfiqih, D., Hakim, L., Muhammad. 2021. Pengaruh suhu, persentase air, dan lama penyimpanan terhadap persentase kenaikan asam lemak bebas (ALB) pada crude palm oil (CPO). Jurnal Teknologi Kimia Unimal, 10(2), 1–14. https://doi.org/10.29103/jtku.v10i2.4955

Oey, S. B., van der Fels-Klerx, H. J., Fogliano, V., van Leeuwen, S. P. J. 2022. Chemical refining methods effectively mitigate 2-MCPD esters, 3-MCPD esters, and glycidyl esters formation in refined vegetable oils. Food Research International, 156, 111137. https://doi.org/10.1016/j.foodres.2022.111137

Pramono, Y. B., Abduh, S. B. M., Hidayat, J. P., Gunawan, C., 2023. Food Quality Defines Your Own Quality, ITK Press.

Stark, N. M., Matuana, L. M., 2021. Trends in sustainable biobased packaging materials: a mini review. Materials Today Sustainability, 15. https://doi.org/10.1016/j.mtsust.2021.100084

Sumarna, D., Sumarlan, S. H., Wijaya, S., Hidayat, N. 2021. Processing of olein fraction red palm oil with minimal refining method and optimization of deodorization process. ICTAFF, 167–175.

Tan, C. H., Lee, C. J., Tan, S. N., Poon, D. T. S., Chong, C. Y. E., Pui, L. P. 2021. Red palm oil: A review on processing, health benefits and its application in food. Journal of Oleo Science, 70(9), 1201–1210. https://doi.org/10.5650/jos.ess21108

Teh, S. S., Lau, H. L. N. 2021. Quality assessment of refined red palm-pressed mesocarp olein. Food Chemistry, 340, 127912. https://doi.org/10.1016/j.foodchem.2020.127912

Tripathi, A. D., Srivastava, S. K., Singh, P., Singh, R. P., Singh, S. P., Jha, A., Yadav, P. 2015. Optimization of process variables for enhanced lactic acid production utilizing paneer whey as substrate in SMF. Applied Food Biotechnology, 2(2), 47–56. https://doi.org/10.22037/afb.v2i2.7612

Widiastuti, N., Silitonga, R. S., Dharma, H. N. C., Jaafar, J., Widyanto, A. R., Purwanto, M. 2022. Decreasing free fatty acid of crude palm oil with polyvinylidene fluoride hollow fiber membranes using a combination of chitosan and glutaraldehyde. RSC Advances, 12(35), 22662–22670. https://doi.org/10.1039/d2ra04005k

Zhu, C., Cai, Y., Gertz, E. R., La Frano, M. R., Burnett, D. J., Burri, B. J. 2015. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women. Nutrition Research, 35(11), 965–974. https://doi.org/10.1016/j.nutres.2015.08.003

Zikri, A., Erlinawati, Sutini, P. L., Agus, M., Fathona, S. 2020. Biodiesel Production from Bintaro (Cerbera Manghas L.) Seeds with Potassium Hydroxide as Catalyst. Journal of Physics: Conference Series, 1500(012084).https://doi.org/10.1088/1742-6596/1500/1/012084

DOI

https://doi.org/10.21107/agrointek.v19i2.26063

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Jefri Pandu Hidayat, Siti Munfarida, Andri Angelina Putri, Adrian Prananda Putra, Theresia Cecilia, Fidela Chosta, Ahmad Maulidi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.