Karakteristik fisikokimia tepung lima varietas lokal gembili dan potensinya dalam pengembangan mi bebas gluten

Markus Jambormias, Didah Nur Faridah, Tjahja Muhandri, Febby Jeanry Polnaya

Abstract

The development of gluten-free noodles using gembili flour offers an alternative solution to reduce Indonesia's heavy reliance on wheat flour while anticipating various health issues related to gluten consumption. This research aims to identify the physicochemical characteristics of gembili flour from five local varieties and to identify the varieties with the most potential for developing gluten-free noodles. Physicochemical characterization of flour includes measuring proximate, crude fiber, and amylose levels as well as flour pasting profile. The best varieties are identified through a theoretical approach based on the physicochemical properties of flour, especially amylose content, setback (ST), and final viscosity (FV), which are used as selection indicators. Empirical proof was carried out by measuring the cooking loss (CL) of noodles to verify the theoretical approach. The physicochemical properties of flour and CL of gembili noodles are greatly influenced by differences in varieties, except for gelatinization temperature and peak time. The Fufulu, Kapok and Kapok Kayanik varieties have high values and are not significantly different in the three selection indicators. The three varieties exhibited amylose, ST, and FV levels of approximately 23%, 204.5-276.50 cP, and 724.5-1012.5 cP, respectively. GT-Biplot analysis shows that only the Kapok and Kapok Kayanik varieties are the best varieties because they have a strong and positive relative position for the three selection indicator variables and a very negative relative position in contrast to CL compared to the other three local varieties. The Kapok variety was chosen as the best variety because it is superior in terms of nutrition and availability of raw materials compared to the other four varieties. The Kapok variety has amylose content, ST, FV, and CL of 23.19±0.34 %, 276.50±3.54 cP, 1012.5±71.4 cP, and 19.78±0.66 %, respectively.

Keywords

Gembili flour; Physicochemical Characteristics; Gluten-free noodles; GT Biplot

References

Association of Official Analytical Chemists. 2019. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International (21st ed.).

Badan Pusat Statistik. 2024. Impor biji gandum dan meslin menurut negara asal utama, 2018-2023. https://www.bps.go.id/id/statistics-table/1/MjAxNiMx/impor-biji-gandum-dan-meslin-menurut-negara-asal-utama--2017-2023.html

Dong, R., Niu, Q., Zhang, K., Hu, X. 2020. The effect of retrogradation time and ambient relative humidity on the quality of extruded oat noodles. Food Sci. Nutr. 8(6), 2940–2949. https://doi.org/10.1002/fsn3.1596

Gutowski, E. D., Weiten, D., Green, K. H., Rigaux, L. N., Bernstein, C. N., Graff, L. A., Walker, J. R., Duerksen, D. R., Silvester, J. A. 2020. Can individuals with celiac disease identify gluten-free foods correctly? Clin. Nutr. ESPEN, 36, 82–90. https://doi.org/10.1016/j.clnesp.2020.01.012

Halwan, C. A., Nisa, F. C. 2015. Making of gembili and rice bran noodles (study of proportion wheat flour : gembili and additioning of rice bran). J. Pangan Dan Agroindustri, 3(4), 1548–1559.

International Organization for Standardization. 2015. Rice – Determination of amylose content - Part 2: Routine methods. International Organization for Standardization 2010 (IS0 ISO 6647-2:2015E).

Izzah, A. F., Fatmaningrum, W., Irawan, R. 2020. Perbedaan gejala pada anak autis yang diet bebas gluten dan kasein dengan yang tidak diet di Surabaya. Amerta Nutr. 4(1), 36–42. https://doi.org/10.20473/amnt.v4i1.2020.36-42

Jambormias, E., Patty, J. R., Laisina, J. K. J., Tutupary, A., Madubun, E. L., Ririhena, R. E. 2014. Genetic and transgressive segregation analysis of multiple traits in generations F2 of mungbean varieties Mamasa Lere Butnem × Lasafu Lere Butsiw cross. J. Budid. Pertan. 10(2), 52–58.

Jollife, I. T. 2002. Principal Components Analysis. In International Encyclopedia of Education (2nd ed.). Springer-Verlag Inc. https://doi.org/10.1016/B978-0-08-044894-7.01358-0

Kusnandar, F., Mutmainah, M., Muhandri, T. 2020. Optimization of Starch Noodle Processing from Banggai Yam (Dioscorea alata) Starches. J. Pangan dan Agroindustri 8(3), 163–174.

Li, B., Xie, B., Liu, J., Chen, X. 2022. A study of starch resources with high-amylose content from five Chinese mutant banana species. Front. Nutri. 9, 1–14.

Mojiono, Nurtama, B., Budijanto, S. 2016. Development of gluten-free noodles using extrusion technology. Pangan 25(2), 125–136.

Muhandri, T. 2012. Mekanisme proses pembuatan mi berbahan baku jagung. Bul. Teknol. Pascapanen Pertan. 8(2), 71–79.

Pasca, B. D., Muhandri, T., Hunaefi, D., Nurtama, B. 2021. Karakteristik fisikokimia tepung singkong dengan beberapa metode modifikasi. J. Mutu Pangan : Indones. J. Food Qual. 8(2), 97–104. https://doi.org/10.29244/jmpi.2021.8.2.97

Prabowo, A. Y., Estiasih, T., Purwantiningrum, I. 2014. Gembili (Dioscorea esculenta L.) as food contain bioactive compounds : A review. J. Pangan dan Agroindustri 2(3), 129–135.

Rahmi, S., Wahyuni, S., Ansharullah. 2018. Karakterisasi sifat fisik produk mie basah dari tepung opa (Dioscorea esculenta L.) termodifikasi dengan penambahan bubur rumput laut. J. Sains dan Teknol. Pangan 3(5), 1682–1690.

Raungrusmee, S., Shrestha, S., Sadiq, M. B., Anal, A. K. 2020. Influence of resistant starch, xanthan gum, inulin and defatted rice bran on the physicochemical, functional and sensory properties of low glycemic gluten-free noodles. LWT - Food Sci. Technol. 126, 1–9. https://doi.org/10.1016/j.lwt.2020.109279

Retnowati, D. S., Kumoro, A. C., Ratnawati, R. 2018. Phycial, thermal and functional properties of flour derived from ubi gembili (Dioscorea escuenta L.) tubers grown in Indonesia. Potravin. Slovak J. Food Sci. 12(1), 539–545.

Sari, D. K., Lestari, R. S. D., Sari, V. D. K., Umbara, M. T. 2015. Pemanfaatan tepung gembili (Dioscorea esculenta) dalam pembuatan mie. Seminar Nasional Sains dan Teknologi, 1–5.

Schwartz, J. M., Le Bail, K., Garnier, C., Llamas, G., Queveau, D., Pontoire, B., Srzednicki, G., Le Bail, P. 2014. Available water in konjac glucomannan-starch mixtures. Influence on the gelatinization, retrogradation and complexation properties of two starches. Food Hydrocoll. 41, 71–78. https://doi.org/10.1016/j.foodhyd.2013.12.014

Smatanová, N., Lacko-Bartošová, M. 2014. Noodle quality of winter wheat cultivated in sustainable farming systems. J. Cent. Eur. Agric. 15(2), 84–94. https://doi.org/10.5513/JCEA01/15.2.1457

Stansluos, A. A. L., Öztürk, A., Niedbała, G., Türkoğlu, A., Haliloğlu, K., Szulc, P., Omrani, A., Wojciechowski, T., Piekutowska, M. 2023. Genotype–trait (GT) biplot analysis for yield and quality stability in some sweet corn (Zea mays L. saccharata Sturt.) genotypes. Agronomy, 13(6), 1–19. https://doi.org/10.3390/agronomy13061538

Tam, L. M., Corke, H., Tan, W. T., Li, J., Collado, L. S. 2004. Production of bihon-type noodles from maize starch differing in amylose content. Cereal Chem. 81(4), 475–480.

Tappiban, P., Sraphet, S., Srisawad, N., Wu, P., Han, H., Smith, D. R., Bao, J., Triwitayakorn, K. 2020. Food hydrocolloids effects of cassava variety and growth location on starch fine structure and physicochemical properties. Food Hydrocoll. 108, 1–11. https://doi.org/10.1016/j.foodhyd.2020.106074

Taraghikhah, N., Ashtari, S., Asri, N., Shahbazkhani, B., Al-Dulaimi, D., Rostami-Nejad, M., Rezaei-Tavirani, M., Razzaghi, M. R., Zali, M. R. 2020. An updated overview of spectrum of gluten-related disorders: Clinical and diagnostic aspects. BMC Gastroenterol. 20(1), 1–12. https://doi.org/10.1186/s12876-020-01390-0

Tian, J., Qin, L., Zeng, X., Ge, P., Fan, J., Zhu, Y. 2023. The role of amylose in gel forming of rice flour. Foods, 12(6), 1–11. https://doi.org/10.3390/foods12061210

Trisna, Marimin, Arkeman, Y., Sunarti, T. C. 2017. Model mitigasi gangguan rantai pasok tepung terigu dengan substitusi bahan baku tepung lokal. (Disertasi, Institut Pertnian Bogor)

Utami, R., Widowati, E., Dewati, A. D. A. R. 2013. Kajian penggunaan tepung gembili (Dioscorea esculenta) dalam pembuatan minuman sinbiotik terhadap total bakteri probiotik, karakter mutu, dan karakter sensoris. J. Teknosains Pangan, 2(3), 3–8.

Utomo, S., Adnan, A. Z., Lestari, R. S. D., Sari, D. K. 2019. Pengaruh rasio pelarut dan waktu ekstraksi terhadap kadar glukomanan pada ekstraksi umbi gembili (Discorea esculenta L) berbantu gelombang mikro. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia, April, 3–4.

Winarti, S., Susiloningsih, E. K. B., Asroh, F. Y. Z. 2017. Karakteristik mi kering dengan subtitusi tepung gembili dan penambahan plastiziser GMS (gliserol mono stearat). Agrointek: J. Teknologi Ind. Pertan. 11(2), 53–62. https://doi.org/https://doi.org/10.21107/agrointek.v11i2.3069

World Instant Noodles Association. 2024. Instant noodles demand rangking. https://instantnoodles.org/en/noodles/demand/table/

Yan, W., Frégeau-Reid, J. 2018. Genotype by yield-trait (GYT) biplot: A novel approach for genotype selection based on multiple traits. Sci. Rep. 8(1), 1–10. https://doi.org/10.1038/s41598-018-26688-8

Zhang, B., Bai, B., Pan, Y., Li, X.-M., Cheng, J.-S., Chen, H.-Q. 2018. Effects of pectin with different molecular weight on gelatinization behavior, textural properties, retrogradation and in vitro digestibility of corn starch. Food Chem. 264, 58–63. https://doi.org/10.1016/j.foodchem.2018.05.011

Zhang, C., Xue, W., Li, T., Wang, L. 2023. Understanding the relationship between the molecular structure and physicochemical properties of soft rice starch. Food 12(19), 1–16. https://doi.org/https://doi.org/ 10.3390/foods12193611

Zou, J., Li, Y., Wang, F., Su, X., Li, Q. 2023. Relationship between structure and functional properties of starch from different cassava (Manihot esculenta Crantz) and yam (Dioscorea opposita Thunb) cultivars used for food and industrial processing. LWT - Food Sci. Technol. 173, 114–261. https://doi.org/10.1016/j.lwt.2022.114261

DOI

https://doi.org/10.21107/agrointek.v19i2.25571

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Markus Jambormias

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.