Karakteristik komposit bio-foam pati-glukomanan pada variasi formulasi perbandingan foaming agent natrium bikarbonat dengan asam sitrat
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Alander, B., A. J. Capezza, Q. Wu, E. Johansson, R. T. Olsson, and M. S. Hedenqvist. 2018. A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial Crops and Products 119(February):41–48.
Alshaeer, H. A. Y., J. M. Irwan, A. F. Alshalif, E. A. Noman, M. Amran, Y. Gamil, A. Alhokabi, and A. A. Al-Gheethi. 2023. Optimisation of compressive strength of foamed concrete with a novel Aspergillus iizukae EAN605 fungus. Case Studies in Construction Materials 19(August):e02400.
Andersen, C. T. 2011. Keefektifan Styrofoam Sebagai Material Kulit Bangunan Menginsulasi Panas. Seminar Nasional AVoER 3:161–168.
Chen, T., Y. Tang, H. Zhao, K. Q. Zhang, X. Wang, and K. Meng. 2022. Sustainable wheat gluten foams used in self-expansion medical dressings. Smart Materials in Medicine 3(March):329–338.
Cinelli, P., E. Chiellini, J. W. Lawton, and S. H. Imam. 2006. Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polymer Degradation and Stability 91(5):1147–1155.
Čop, M., C. Lacoste, M. Conradi, M. P. Laborie, A. Pizzi, and M. Sernek. 2015. The effect of the composition of spruce and pine tannin-based foams on their physical, morphological and compression properties. Industrial Crops and Products 74:158–164.
Darder, M., C. R. S. Matos, P. Aranda, R. F. Gouveia, and E. Ruiz-Hitzky. 2017. Bionanocomposite foams based on the assembly of starch and alginate with sepiolite fibrous clay. Carbohydrate Polymers 157:1933–1939.
Dinesh, H. Wang, and J. Kim. 2022. Citric Acid-Crosslinked Highly Porous Cellulose Nanofiber Foam Prepared by an Environment-Friendly and Simple Process. Global Challenges 6(11).
Doyan, A., and Humaini. 2017. Jurnal Pendidikan Fisika dan Teknologi ( ISSN . 2407-6902 ) Volume III No 1 , Juni 2017 Sifat Optik Lapisan Tipis ZnO. Jurnal Pendidikan Fisika dan Teknolog 3(1):34–39.
Fawzi, T., L. J. Yu, K. H. Badri, Z. Sajuri, A. A. M. Al-Talib, and S. Y. Eh Noum. 2019. Sodium hydrogen bicarbonate and water as blowing agent in palm kernel oil based polyol polyurethane foam. Materials Today: Proceedings 39(xxxx):993–998.
Federico, C. E., Q. Wu, R. T. Olsson, and A. J. Capezza. 2022. Three-dimensional (3D) morphological and liquid absorption assessment of sustainable biofoams absorbents using X-ray microtomography analysis. Polymer Testing 116(May):107753.
Ferdiansyah, P., B. A. Harsojuwono, and I. W. Arnata. 2022. Pengaruh konsentrasi asam stearat dan selulosa dari limbah padat pengolahan tapioka terhadap karakteristik biokomposit foam tapioka dan glukomanan. Agrotechno 7(2):114–122.
Harefa, B. I., M. M. G. Permana, and A. Ilcham. 2019. Pembuatan Bahan Pengemas Alami dari Serat Nanas dan Serat Pandan dengan Pati Sagu sebagai Perekat. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia(April):1–6.
Hassan, M. M., N. Tucker, and M. J. Le Guen. 2020. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydrate Polymers 230:115675.
Hendrawati, N., A. A. Wibowo, and R. D. Chrisnandari. 2020. Biodegradable Foam dari Pati Sagu Terasitilasi dengan Penambahan Blowing Agent NaHCO3. Jurnal Teknik Kimia dan Lingkungan 4(2):186–195.
Hevira, L., D. Ariza, and A. Rahmi. 2021. Pembuatan Biofoam Berbahan Dasar Ampas Tebu Dan Whey. Jurnal Kimia dan Kemasan 43(2):75.
Kaisangsri, N., O. Kerdchoechuen, and N. Laohakunjit. 2014. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers 110:70–77.
Kawijia, K., W. Atmaka, and S. Lestariana. 2017. Study of Characteristics Whole Cassava Starch Based Edible Film With Citric Acid Cross-Linking Modification. Jurnal Teknologi Pertanian 18(2):143–152.
Khanoonkon, N., P. Yenpirun, S. Chotineeranat, and P. Chatakanonda. 2022. Development of Biofoam Trays from Cassava Starch Blended with Citric Acid-modified Starch and Sugarcane Bagasse Cellulose Fiber. Journal of Food Science and Agricultural Technology (JFAT) 6(1):40–45.
Kumar, A., V. R. Tumu, S. Ray Chowdhury, and R. R. Ramana. 2019. A green physical approach to compatibilize a bio-based poly (lactic acid)/lignin blend for better mechanical, thermal and degradation properties. International Journal of Biological Macromolecules 121:588–600.
Lubis, M., A. Suryani, I. A. Kartika, and E. Hambali. 2019. Pemanfaatan Foaming Agent Dari Minyak Sawit Pada Beton Ringan. Jurnal Teknologi Industri Pertanian 29(3):307–316.
Lubis, N. rizqi F., R. Dewi, S. Sulhatun, Z. Ginting, and M. Muhammad. 2022. Biofoam Berbahan Pati Sagu Dengan Penguat Selulosa Tandan Kosong Kelapa Sawit Sebagai Kemasan Makanan Dengan Metode Thermopressing. Chemical Engineering Journal Storage (CEJS) 2(3):95.
Mukminah, I. Al. 2019. Bahaya Wadah Styrofoam dan Alternatif Penggantinya. Farmasetika.com (Online) 4(2):32–34.
Pornsuksomboon, K., B. B. Holló, K. M. Szécsényi, and K. Kaewtatip. 2016. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydrate Polymers 136:107–112.
Putri, S. S., B. A. Harsojuwono, and A. A. M. D. Anggreni. 2023. Pengaruh Konsentrasi Polivinil Alkohol dan Magnesium Stearat terhadap Karakteristik Bahan Pengemas Biokomposit Foam Tapioka dan Glukomanan. Jurnal Ilmiah Teknologi Pertanian 8(2):2–8.
Rahmatunisa, R. 2015. Pengaruh penambahan nanopartikel zno dan etilen glikol pada sifat fungsional kemasan biodegradable foam dari tapioka dan ampok jagung. Institut Pertanian Bogor.
Reddy, N., and Y. Yang. 2010. Citric acid cross-linking of starch films. Food Chemistry 118(3):702–711.
Ritonga, A. U. M., S. Humaidi, and K. Sembiring. 2019. Pembuatan dan karakterisasi biofoam berbasis komposit serbuk daun keladi yang diperkuat oleh polivinil asetat (pvac). Tesis: Universitas Sumatra Utara:1–2.
Sanguanwong, A., A. E. Flood, M. Ogawa, R. Martín-Sampedro, M. Darder, B. Wicklein, P. Aranda, and E. Ruiz-Hitzky. 2021. Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials 417:126068.
Sarlinda, F., A. Hasan, and Z. Ulma. 2022. Pengaruh Penambahan Serat Kulit Kopi dan PVA terhadap Karakteristik Biodegradable Foam dari Pati Kulit Singkong. Jurnal Pengendalian Pencemaran Lingkungan (JPPL) 4(2):9–20.
Sumardiono, S., I. Pudjihastuti, R. Amalia, and Y. A. Yudanto. 2021. Characteristics of Biodegradable Foam (Bio-foam) Made from Cassava Flour and Corn Fiber. IOP Conference Series: Materials Science and Engineering 1053(1):012082.
Utomo, P., N. M. Nizardo, and E. Saepudin. 2020. Crosslink modification of tapioca starch with citric acid as a functional food. AIP Conference Proceedings 2242(June).
Vercelheze, A. E. S., F. M. Fakhouri, L. H. Dall’Antônia, A. Urbano, E. Y. Youssef, F. Yamashita, and S. Mali. 2012. Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. Carbohydrate Polymers 87(2):1302–1310.
Widiati, A. 2020. Peranan Kemasan (Packaging) Dalam Meningkatkan Pemasaran Produk Usaha Mikro Kecil Menengah (Umkm) Di “Mas Pack” Terminal Kemasan Pontianak. JAAKFE UNTAN (Jurnal Audit dan Akuntansi Fakultas Ekonomi Universitas Tanjungpura) 8(2):67–76.
Yuli, D., A. Aryanti, H. Utami, L. Lismeri, and M. Haviz. 2021. Biofoam Berbahan Baku Campuran Pati dan Batang Sorgum 02(02).
Zhang, X., Z. Teng, and R. Huang. 2020. Polymers Biodegradable Starch / Chitosan Foam via Microwave Assisted Preparation : Morphology and Performance Properties. Polymers 12(2612):1–17.
Zhang, Y., A. N. M. A. Haque, and M. Naebe. 2023. UV-functional flexible nanocomposite film with high lignin-cellulose nanocrystals content. Journal of Materials Research and Technology 26:5990–6000.
Alander, B., Capezza, A. J., Wu, Q., Johansson, E., Olsson, R. T., Hedenqvist, M. S., 2018. A Facile Way of Making Inexpensive Rigid and Soft Protein Biofoams with Rapid Liquid Absorption. Indust. Crop. Prod. 119, 41–48. https://doi.org/10.1016/j.indcrop.2018.03.069
Alshaeer, H. A. Y., Irwan, J. M., Alshalif, A. F., Noman, E. A., Amran, M., Gamil, Y., Alhokabi, A., Al-Gheethi, A. A., 2023. Optimisation of Compressive Strength of Foamed Concrete with a Novel Aspergillus iizukae EAN605 Fungus. Case Stud. Construct. Mater. 19, e02400. https://doi.org/10.1016/j.cscm.2023.e02400
Andersen, C. T., 2011. Keefektifan Styrofoam Sebagai Material Kulit Bangunan Menginsulasi Panas. Seminar Nasional AVoER 3, 161–168. http://eprints.unsri.ac.id/124/1/Pages_from_PROSIDING_AVOER_2011-19.pdf
Chen, T., Tang, Y., Zhao, H., Zhang, K. Q., Wang, X., Meng, K., 2022. Sustainable Wheat Gluten Foams Used in Self-Expansion Medical Dressings. Smart Mater. Medic. 3, 329–338. https://doi.org/10.1016/j.smaim.2022.03.005
Cinelli, P., Chiellini, E., Lawton, J. W., Imam, S. H., 2006. Foamed Articles Based On Potato Starch, Corn Fibers and Poly (Vinyl Alcohol). Polym. Degradat. Stabil. 91, 1147–1155. https://doi.org/10.1016/j.polymdegradstab.2005.07.001
Čop, M., Lacoste, C., Conradi, M., Laborie, M. P., Pizzi, A., Sernek, M., 2015. The Effect of The Composition of Spruce and Pine Tannin-Based Foams on Their Physical, Morphological and Compression Properties. Indus. Crop. Prod. 74, 158–164. https://doi.org/10.1016/j.indcrop.2015.04.009
Darder, M., Matos, C. R. S., Aranda, P., Gouveia, R. F., Ruiz-Hitzky, E. 2017. Bionanocomposite Foams Based on The Assembly of Starch and Alginate with Sepiolite Fibrous Clay. Carbohyd. Polym. 157, 1933–1939. https://doi.org/10.1016/j.carbpol.2016.11.079
Dinesh, Wang, H., Kim, J., 2022. Citric Acid-Crosslinked Highly Porous Cellulose Nanofiber Foam Prepared by an Environment-Friendly and Simple Process. Global Challenges, 6, https://doi.org/10.1002/gch2.202200090
Doyan, A., Humaini., 2017. J. Pendidikan Fisika dan Teknologi (ISSN. 2407-690) III (1) Juni 2017 Sifat Optik Lapisan Tipis ZnO. J. Pendidik. Fis. Teknol. 3, 34–39.
Fawzi, T., Yu, L. J., Badri, K. H., Sajuri, Z., Al-Talib, A. A. M., Eh Noum, S. Y., 2019. Sodium Hydrogen Bicarbonate and Water as Blowing Agent in Palm Kernel Oil Based Polyol Polyurethane Foam. Mater. Today: Proceedings. 39: 993–998. https://doi.org/10.1016/j.matpr.2020.04.595
Federico, C. E., Wu, Q., Olsson, R. T., Capezza, A. J., 2022. Three-Dimensional (3D) Morphological and Liquid Absorption Assessment of Sustainable Biofoams Absorbents Using X-Ray Microtomography Analysis. Polym. Test. 116, 107753. https://doi.org/10.1016/j.polymertesting.2022.107753
Ferdiansyah, P., Harsojuwono, B. A., Arnata, I. W., 2022. Pengaruh Konsentrasi Asam Stearat dan Selulosa dari Limbah Padat Pengolahan Tapioka Terhadap Karakteristik Biokomposit Foam Tapioka dan Glukomanan. Agrotechno, 7, 114–122.
Harefa, B. I., Permana, M. M. G., Ilcham, A., 2019. Pembuatan Bahan Pengemas Alami dari Serat Nanas dan Serat Pandan dengan Pati Sagu sebagai Perekat. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia, April, 1–6.
Hassan, M. M., Tucker, N., Le Guen, M. J., 2020. Thermal, Mechanical and Viscoelastic Properties of Citric Acid-Crosslinked Starch/Cellulose Composite Foams. Carbohyd. Polym. 230, 115675. https://doi.org/10.1016/j.carbpol.2019.115675
Hendrawati, N., Wibowo, A. A., Chrisnandari, R. D., 2020. Biodegradable Foam dari Pati Sagu Terasitilasi dengan Penambahan Blowing Agent NaHCO3. J. Tek. Kim. Lingkung. 4, 186–195. https://doi.org/10.33795/jtkl.v4i2.168
Hevira, L., Ariza, D., Rahmi, A., 2021. Pembuatan Biofoam Berbahan Dasar Ampas Tebu dan Whey. J. Kim. Kem. 43, 75. https://doi.org/10.24817/jkk.v43i2.6718
Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N., 2014. Characterization of Cassava Starch Based Foam Blended With Plant Proteins, Kraft Fiber, and Palm Oil. Carbohyd. Polym. 110, 70–77. https://doi.org/10.1016/j.carbpol.2014.03.067
Kawijia, K., Atmaka, W., Lestariana, S., 2017. Study of Characteristics Whole Cassava Starch Based Edible Film with Citric Acid Cross-Linking Modification. J. Teknol. Pertan. 18, 143–152. https://doi.org/10.21776/ub.jtp.2017.018.02.14
Khanoonkon, N., Yenpirun, P., Chotineeranat, S., Chatakanonda, P., 2022. Development of Biofoam Trays from Cassava Starch Blended with Citric Acid-modified Starch and Sugarcane Bagasse Cellulose Fiber. J. Food Sci. Agricultur. Technol. 6, 40–45. http://rs.mfu.ac.th/ojs/index.php/jfat/article/view/383
Kumar, A., Tumu, V. R., Ray Chowdhury, S., Ramana, R. R., 2019. A Green Physical Approach to Compatibilize a Bio-Based Poly (Lactic Acid)/Lignin Blend for Better Mechanical, Thermal and Degradation Properties. International J. Biologic. Macromol. 121, 588–600. https://doi.org/10.1016/j.ijbiomac.2018.10.057
Lubis, M., Ani S., Ika A. K., and Erliza H., 2019. Pemanfaatan Foaming Agent Dari Minyak Sawit Pada Beton Ringan. J. Teknol. Indust. Pert. 29, 307–16. doi: 10.24961/j.tek.ind.pert.2019.29.3.307.
Lubis, N. Rizqi F., Dewi, R., Sulhatun, S., Ginting, Z., Muhammad, M., 2022. Biofoam Berbahan Pati Sagu Dengan Penguat Selulosa Tandan Kosong Kelapa Sawit Sebagai Kemasan Makanan dengan Metode Thermopressing. Chem. Eng.J. Stor. 2, 95. https://doi.org/10.29103/cejs.v2i3.6419
Mukminah, I. Al., 2019. Bahaya Wadah Styrofoam dan Alternatif Penggantinya. Farmasetika.Com (Online), 4, 32–34. https://doi.org/10.24198/farmasetika.v4i2.22589
Pornsuksomboon, K., Holló, B. B., Szécsényi, K. M., Kaewtatip, K., 2016. Properties of Baked Foams from Citric Acid Modified Cassava Starch and Native Cassava Starch Blends. Carbohyd. Polym. 136, 107–112. https://doi.org/10.1016/j.carbpol.2015.09.019
Putri, S. S., Harsojuwono, B. A., Anggreni, A. A. M. D., 2023. Pengaruh Konsentrasi Polivinil Alkohol dan Magnesium Stearat terhadap Karakteristik Bahan Pengemas Biokomposit Foam Tapioka dan Glukomanan. J. Ilmiah Teknol. Pertan. 8, 2–8.
Rahmatunisa, R., 2015. Pengaruh Penambahan Nanopartikel ZnO Dan Etilen Glikol pada Sifat Fungsional Kemasan Biodegradable Foam dari Tapioka dan Ampok Jagung. In IPB. Institut Pertanian Bogor.
Reddy, N., Yang, Y., 2010. Citric Acid Cross-Linking of Starch Films. Food Chem. 118, 702–711. https://doi.org/10.1016/j.foodchem.2009.05.050
Ritonga, A. U. M., Humaidi, S., Sembiring, K., 2019. Pembuatan dan Karakterisasi Biofoam Berbasis Komposit Serbuk Daun Keladi Yang Diperkuat Oleh Polivinil Asetat (PVAc). Tesis: Universitas Sumatra Utara, 1–2. https://doi.org/https://repositori.usu.ac.id/handle/123456789/20186
Sanguanwong, A., Flood, A. E., Ogawa, M., Martín-Sampedro, R., Darder, M., Wicklein, B., Aranda, P., Ruiz-Hitzky, E., 2021. Hydrophobic Composite Foams Based on Nanocellulose-Sepiolite for Oil Sorption Applications. J. Hazard. Mater. 417, 126068. https://doi.org/10.1016/j.jhazmat.2021.126068
Sarlinda, F., Hasan, A., Ulma, Z., 2022. Pengaruh Penambahan Serat Kulit Kopi dan PVA terhadap Karakteristik Biodegradable Foam dari Pati Kulit Singkong. J. Pengendal. Pencemar. Ling. 4, 9–20. https://doi.org/10.35970/jppl.v4i2.1430
Sumardiono, S., Pudjihastuti, I., Amalia, R., Yudanto, Y. A., 2021. Characteristics of Biodegradable Foam (Bio-foam) Made from Cassava Flour and Corn Fiber. IOP Conference Series: Mater. Sci. Eng. 1053, 012082. https://doi.org/10.1088/1757-899x/1053/1/012082
Utomo, P., Nizardo, N. M., Saepudin, E., 2020. Crosslink Modification of Tapioca Starch With Citric Acid as A Functional Food. AIP Conf. Proceed. 2242. https://doi.org/10.1063/5.0010364
Vercelheze, A. E. S., Fakhouri, F. M., Dall’Antônia, L. H., Urbano, A., Youssef, E. Y., Yamashita, F., Mali, S., 2012. Properties of Baked Foams Based on Cassava Starch, Sugarcane Bagasse Fibers and Montmorillonite. Carbohyd. Polym. 87, 1302–1310. https://doi.org/10.1016/j.carbpol.2011.09.016
Widiati, A. 2020. Peranan Kemasan (Packaging) dalam Meningkatkan Pemasaran Produk Usaha Mikro Kecil Menengah (UMKM) di “Mas Pack” Terminal Kemasan Pontianak. J. Audit Dan Akuntansi Fakultas Ekonomi Universitas Tanjungpura, 8, 67–76. https://doi.org/10.26418/jaakfe.v8i2.40670
Yuli, D., Aryanti, A., Utami, H., Lismeri, L., Haviz, M., 2021. Biofoam Berbahan Baku Campuran Pati dan Batang Sorgum. 02.
Zhang, X., Teng, Z., Huang, R., 2020. Polymers Biodegradable Starch/Chitosan Foam via Microwave Assisted Preparation: Morphology and Performance Properties. Polymers. 12, 1–17.
Zhang, Y., Haque, A. N. M. A., Naebe, M., 2023. UV-Functional Flexible Nanocomposite Film with High Lignin-Cellulose Nanocrystals Content. J. Mater. Researc. Technol. 26, 5990–6000. https://doi.org/10.1016/j.jmrt.2023.09.004
DOI
https://doi.org/10.21107/agrointek.v19i1.25350Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 I Wayan Arnata, Early Dea Kartika Fiano, I Gusti Ayu Lani Triani
This work is licensed under a Creative Commons Attribution 4.0 International License.