Karakteristik komposit bio-foam pati-glukomanan pada variasi formulasi perbandingan foaming agent natrium bikarbonat dengan asam sitrat

I Wayan Arnata, Early Dea Kartika Fiano, I Gusti Ayu Lani Triani

Abstract

Styrofoam food packaging has many advantages. However, it has been reported to be hazardous to health and the environment, so it is necessary to develop bi-foam as a safe packaging alternative. This research aims to determine the effect of variations in the formulation ratio of foaming agents based on sodium bicarbonate (NaHCO3)  and citric acid (CA) on the starch-glucomannan bio-foam characteristics and to determine the appropriate comparison formulation to produce the best bio-foam characteristics. This research used a randomized block design with treatment formulation variations of NaHCO3 and CA ratio, consisting of 5 levels, namely 8:4, 8.5:3.5, 9:3, 9.5:2.5, and 10:2. Each treatment was grouped into three so that 15 experimental units were obtained. The variables observed were density, tensile strength, compressive strength, water adsorption capacity, and functional groups by Fourier-Transform Infrared Spectroscopy (FTIR), surface morphology by Scanning Electron Microscope (SEM), and thermal stability by Thermogravimetric Analyzers/ Differential Thermogravimetric (TGA/DTG). The research results showed that the foaming agent formulation from NaHCO3/CA significantly affected the density, tensile strength, compressive strength, and water adsorption capacity of the starch-glucomannan bio-foam. Bio-foam with a NaHCO3/CA ratio of 8:4 has the properties of low water adsorption capacity, high tensile strength, and compressive strength but has the disadvantage of a relatively high-density value. The NaHCO3/CA (8:4) produces the best characteristics with a density of 0.36 g/cm3, water adsorption capacity of 2.95%, tensile strength of 0.22 MPa, and compressive strength of 1.48 MPa. FTIR analysis shows changes in the spectral intensity of the functional groups of the bio-foam polymer as an indication that interaction has occurred between the functional groups of each polymer. SEM analysis shows that bio-foam, adding a NaHCO3/CA, produces a relatively rougher and more porous surface. At the same time, its thermal stability is lower than that of bio-foam without adding a foaming agent.

Keywords

Bio-foam; Citric acid; Foaming agent; Sodium bicarbonate

References

Alander, B., A. J. Capezza, Q. Wu, E. Johansson, R. T. Olsson, and M. S. Hedenqvist. 2018. A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial Crops and Products 119(February):41–48.

Alshaeer, H. A. Y., J. M. Irwan, A. F. Alshalif, E. A. Noman, M. Amran, Y. Gamil, A. Alhokabi, and A. A. Al-Gheethi. 2023. Optimisation of compressive strength of foamed concrete with a novel Aspergillus iizukae EAN605 fungus. Case Studies in Construction Materials 19(August):e02400.

Andersen, C. T. 2011. Keefektifan Styrofoam Sebagai Material Kulit Bangunan Menginsulasi Panas. Seminar Nasional AVoER 3:161–168.

Chen, T., Y. Tang, H. Zhao, K. Q. Zhang, X. Wang, and K. Meng. 2022. Sustainable wheat gluten foams used in self-expansion medical dressings. Smart Materials in Medicine 3(March):329–338.

Cinelli, P., E. Chiellini, J. W. Lawton, and S. H. Imam. 2006. Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polymer Degradation and Stability 91(5):1147–1155.

Čop, M., C. Lacoste, M. Conradi, M. P. Laborie, A. Pizzi, and M. Sernek. 2015. The effect of the composition of spruce and pine tannin-based foams on their physical, morphological and compression properties. Industrial Crops and Products 74:158–164.

Darder, M., C. R. S. Matos, P. Aranda, R. F. Gouveia, and E. Ruiz-Hitzky. 2017. Bionanocomposite foams based on the assembly of starch and alginate with sepiolite fibrous clay. Carbohydrate Polymers 157:1933–1939.

Dinesh, H. Wang, and J. Kim. 2022. Citric Acid-Crosslinked Highly Porous Cellulose Nanofiber Foam Prepared by an Environment-Friendly and Simple Process. Global Challenges 6(11).

Doyan, A., and Humaini. 2017. Jurnal Pendidikan Fisika dan Teknologi ( ISSN . 2407-6902 ) Volume III No 1 , Juni 2017 Sifat Optik Lapisan Tipis ZnO. Jurnal Pendidikan Fisika dan Teknolog 3(1):34–39.

Fawzi, T., L. J. Yu, K. H. Badri, Z. Sajuri, A. A. M. Al-Talib, and S. Y. Eh Noum. 2019. Sodium hydrogen bicarbonate and water as blowing agent in palm kernel oil based polyol polyurethane foam. Materials Today: Proceedings 39(xxxx):993–998.

Federico, C. E., Q. Wu, R. T. Olsson, and A. J. Capezza. 2022. Three-dimensional (3D) morphological and liquid absorption assessment of sustainable biofoams absorbents using X-ray microtomography analysis. Polymer Testing 116(May):107753.

Ferdiansyah, P., B. A. Harsojuwono, and I. W. Arnata. 2022. Pengaruh konsentrasi asam stearat dan selulosa dari limbah padat pengolahan tapioka terhadap karakteristik biokomposit foam tapioka dan glukomanan. Agrotechno 7(2):114–122.

Harefa, B. I., M. M. G. Permana, and A. Ilcham. 2019. Pembuatan Bahan Pengemas Alami dari Serat Nanas dan Serat Pandan dengan Pati Sagu sebagai Perekat. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia(April):1–6.

Hassan, M. M., N. Tucker, and M. J. Le Guen. 2020. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydrate Polymers 230:115675.

Hendrawati, N., A. A. Wibowo, and R. D. Chrisnandari. 2020. Biodegradable Foam dari Pati Sagu Terasitilasi dengan Penambahan Blowing Agent NaHCO3. Jurnal Teknik Kimia dan Lingkungan 4(2):186–195.

Hevira, L., D. Ariza, and A. Rahmi. 2021. Pembuatan Biofoam Berbahan Dasar Ampas Tebu Dan Whey. Jurnal Kimia dan Kemasan 43(2):75.

Kaisangsri, N., O. Kerdchoechuen, and N. Laohakunjit. 2014. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers 110:70–77.

Kawijia, K., W. Atmaka, and S. Lestariana. 2017. Study of Characteristics Whole Cassava Starch Based Edible Film With Citric Acid Cross-Linking Modification. Jurnal Teknologi Pertanian 18(2):143–152.

Khanoonkon, N., P. Yenpirun, S. Chotineeranat, and P. Chatakanonda. 2022. Development of Biofoam Trays from Cassava Starch Blended with Citric Acid-modified Starch and Sugarcane Bagasse Cellulose Fiber. Journal of Food Science and Agricultural Technology (JFAT) 6(1):40–45.

Kumar, A., V. R. Tumu, S. Ray Chowdhury, and R. R. Ramana. 2019. A green physical approach to compatibilize a bio-based poly (lactic acid)/lignin blend for better mechanical, thermal and degradation properties. International Journal of Biological Macromolecules 121:588–600.

Lubis, M., A. Suryani, I. A. Kartika, and E. Hambali. 2019. Pemanfaatan Foaming Agent Dari Minyak Sawit Pada Beton Ringan. Jurnal Teknologi Industri Pertanian 29(3):307–316.

Lubis, N. rizqi F., R. Dewi, S. Sulhatun, Z. Ginting, and M. Muhammad. 2022. Biofoam Berbahan Pati Sagu Dengan Penguat Selulosa Tandan Kosong Kelapa Sawit Sebagai Kemasan Makanan Dengan Metode Thermopressing. Chemical Engineering Journal Storage (CEJS) 2(3):95.

Mukminah, I. Al. 2019. Bahaya Wadah Styrofoam dan Alternatif Penggantinya. Farmasetika.com (Online) 4(2):32–34.

Pornsuksomboon, K., B. B. Holló, K. M. Szécsényi, and K. Kaewtatip. 2016. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydrate Polymers 136:107–112.

Putri, S. S., B. A. Harsojuwono, and A. A. M. D. Anggreni. 2023. Pengaruh Konsentrasi Polivinil Alkohol dan Magnesium Stearat terhadap Karakteristik Bahan Pengemas Biokomposit Foam Tapioka dan Glukomanan. Jurnal Ilmiah Teknologi Pertanian 8(2):2–8.

Rahmatunisa, R. 2015. Pengaruh penambahan nanopartikel zno dan etilen glikol pada sifat fungsional kemasan biodegradable foam dari tapioka dan ampok jagung. Institut Pertanian Bogor.

Reddy, N., and Y. Yang. 2010. Citric acid cross-linking of starch films. Food Chemistry 118(3):702–711.

Ritonga, A. U. M., S. Humaidi, and K. Sembiring. 2019. Pembuatan dan karakterisasi biofoam berbasis komposit serbuk daun keladi yang diperkuat oleh polivinil asetat (pvac). Tesis: Universitas Sumatra Utara:1–2.

Sanguanwong, A., A. E. Flood, M. Ogawa, R. Martín-Sampedro, M. Darder, B. Wicklein, P. Aranda, and E. Ruiz-Hitzky. 2021. Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials 417:126068.

Sarlinda, F., A. Hasan, and Z. Ulma. 2022. Pengaruh Penambahan Serat Kulit Kopi dan PVA terhadap Karakteristik Biodegradable Foam dari Pati Kulit Singkong. Jurnal Pengendalian Pencemaran Lingkungan (JPPL) 4(2):9–20.

Sumardiono, S., I. Pudjihastuti, R. Amalia, and Y. A. Yudanto. 2021. Characteristics of Biodegradable Foam (Bio-foam) Made from Cassava Flour and Corn Fiber. IOP Conference Series: Materials Science and Engineering 1053(1):012082.

Utomo, P., N. M. Nizardo, and E. Saepudin. 2020. Crosslink modification of tapioca starch with citric acid as a functional food. AIP Conference Proceedings 2242(June).

Vercelheze, A. E. S., F. M. Fakhouri, L. H. Dall’Antônia, A. Urbano, E. Y. Youssef, F. Yamashita, and S. Mali. 2012. Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. Carbohydrate Polymers 87(2):1302–1310.

Widiati, A. 2020. Peranan Kemasan (Packaging) Dalam Meningkatkan Pemasaran Produk Usaha Mikro Kecil Menengah (Umkm) Di “Mas Pack” Terminal Kemasan Pontianak. JAAKFE UNTAN (Jurnal Audit dan Akuntansi Fakultas Ekonomi Universitas Tanjungpura) 8(2):67–76.

Yuli, D., A. Aryanti, H. Utami, L. Lismeri, and M. Haviz. 2021. Biofoam Berbahan Baku Campuran Pati dan Batang Sorgum 02(02).

Zhang, X., Z. Teng, and R. Huang. 2020. Polymers Biodegradable Starch / Chitosan Foam via Microwave Assisted Preparation : Morphology and Performance Properties. Polymers 12(2612):1–17.

Zhang, Y., A. N. M. A. Haque, and M. Naebe. 2023. UV-functional flexible nanocomposite film with high lignin-cellulose nanocrystals content. Journal of Materials Research and Technology 26:5990–6000.

Alander, B., Capezza, A. J., Wu, Q., Johansson, E., Olsson, R. T., Hedenqvist, M. S., 2018. A Facile Way of Making Inexpensive Rigid and Soft Protein Biofoams with Rapid Liquid Absorption. Indust. Crop. Prod. 119, 41–48. https://doi.org/10.1016/j.indcrop.2018.03.069

Alshaeer, H. A. Y., Irwan, J. M., Alshalif, A. F., Noman, E. A., Amran, M., Gamil, Y., Alhokabi, A., Al-Gheethi, A. A., 2023. Optimisation of Compressive Strength of Foamed Concrete with a Novel Aspergillus iizukae EAN605 Fungus. Case Stud. Construct. Mater. 19, e02400. https://doi.org/10.1016/j.cscm.2023.e02400

Andersen, C. T., 2011. Keefektifan Styrofoam Sebagai Material Kulit Bangunan Menginsulasi Panas. Seminar Nasional AVoER 3, 161–168. http://eprints.unsri.ac.id/124/1/Pages_from_PROSIDING_AVOER_2011-19.pdf

Chen, T., Tang, Y., Zhao, H., Zhang, K. Q., Wang, X., Meng, K., 2022. Sustainable Wheat Gluten Foams Used in Self-Expansion Medical Dressings. Smart Mater. Medic. 3, 329–338. https://doi.org/10.1016/j.smaim.2022.03.005

Cinelli, P., Chiellini, E., Lawton, J. W., Imam, S. H., 2006. Foamed Articles Based On Potato Starch, Corn Fibers and Poly (Vinyl Alcohol). Polym. Degradat. Stabil. 91, 1147–1155. https://doi.org/10.1016/j.polymdegradstab.2005.07.001

Čop, M., Lacoste, C., Conradi, M., Laborie, M. P., Pizzi, A., Sernek, M., 2015. The Effect of The Composition of Spruce and Pine Tannin-Based Foams on Their Physical, Morphological and Compression Properties. Indus. Crop. Prod. 74, 158–164. https://doi.org/10.1016/j.indcrop.2015.04.009

Darder, M., Matos, C. R. S., Aranda, P., Gouveia, R. F., Ruiz-Hitzky, E. 2017. Bionanocomposite Foams Based on The Assembly of Starch and Alginate with Sepiolite Fibrous Clay. Carbohyd. Polym. 157, 1933–1939. https://doi.org/10.1016/j.carbpol.2016.11.079

Dinesh, Wang, H., Kim, J., 2022. Citric Acid-Crosslinked Highly Porous Cellulose Nanofiber Foam Prepared by an Environment-Friendly and Simple Process. Global Challenges, 6, https://doi.org/10.1002/gch2.202200090

Doyan, A., Humaini., 2017. J. Pendidikan Fisika dan Teknologi (ISSN. 2407-690) III (1) Juni 2017 Sifat Optik Lapisan Tipis ZnO. J. Pendidik. Fis. Teknol. 3, 34–39.

Fawzi, T., Yu, L. J., Badri, K. H., Sajuri, Z., Al-Talib, A. A. M., Eh Noum, S. Y., 2019. Sodium Hydrogen Bicarbonate and Water as Blowing Agent in Palm Kernel Oil Based Polyol Polyurethane Foam. Mater. Today: Proceedings. 39: 993–998. https://doi.org/10.1016/j.matpr.2020.04.595

Federico, C. E., Wu, Q., Olsson, R. T., Capezza, A. J., 2022. Three-Dimensional (3D) Morphological and Liquid Absorption Assessment of Sustainable Biofoams Absorbents Using X-Ray Microtomography Analysis. Polym. Test. 116, 107753. https://doi.org/10.1016/j.polymertesting.2022.107753

Ferdiansyah, P., Harsojuwono, B. A., Arnata, I. W., 2022. Pengaruh Konsentrasi Asam Stearat dan Selulosa dari Limbah Padat Pengolahan Tapioka Terhadap Karakteristik Biokomposit Foam Tapioka dan Glukomanan. Agrotechno, 7, 114–122.

Harefa, B. I., Permana, M. M. G., Ilcham, A., 2019. Pembuatan Bahan Pengemas Alami dari Serat Nanas dan Serat Pandan dengan Pati Sagu sebagai Perekat. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia, April, 1–6.

Hassan, M. M., Tucker, N., Le Guen, M. J., 2020. Thermal, Mechanical and Viscoelastic Properties of Citric Acid-Crosslinked Starch/Cellulose Composite Foams. Carbohyd. Polym. 230, 115675. https://doi.org/10.1016/j.carbpol.2019.115675

Hendrawati, N., Wibowo, A. A., Chrisnandari, R. D., 2020. Biodegradable Foam dari Pati Sagu Terasitilasi dengan Penambahan Blowing Agent NaHCO3. J. Tek. Kim. Lingkung. 4, 186–195. https://doi.org/10.33795/jtkl.v4i2.168

Hevira, L., Ariza, D., Rahmi, A., 2021. Pembuatan Biofoam Berbahan Dasar Ampas Tebu dan Whey. J. Kim. Kem. 43, 75. https://doi.org/10.24817/jkk.v43i2.6718

Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N., 2014. Characterization of Cassava Starch Based Foam Blended With Plant Proteins, Kraft Fiber, and Palm Oil. Carbohyd. Polym. 110, 70–77. https://doi.org/10.1016/j.carbpol.2014.03.067

Kawijia, K., Atmaka, W., Lestariana, S., 2017. Study of Characteristics Whole Cassava Starch Based Edible Film with Citric Acid Cross-Linking Modification. J. Teknol. Pertan. 18, 143–152. https://doi.org/10.21776/ub.jtp.2017.018.02.14

Khanoonkon, N., Yenpirun, P., Chotineeranat, S., Chatakanonda, P., 2022. Development of Biofoam Trays from Cassava Starch Blended with Citric Acid-modified Starch and Sugarcane Bagasse Cellulose Fiber. J. Food Sci. Agricultur. Technol. 6, 40–45. http://rs.mfu.ac.th/ojs/index.php/jfat/article/view/383

Kumar, A., Tumu, V. R., Ray Chowdhury, S., Ramana, R. R., 2019. A Green Physical Approach to Compatibilize a Bio-Based Poly (Lactic Acid)/Lignin Blend for Better Mechanical, Thermal and Degradation Properties. International J. Biologic. Macromol. 121, 588–600. https://doi.org/10.1016/j.ijbiomac.2018.10.057

Lubis, M., Ani S., Ika A. K., and Erliza H., 2019. Pemanfaatan Foaming Agent Dari Minyak Sawit Pada Beton Ringan. J. Teknol. Indust. Pert. 29, 307–16. doi: 10.24961/j.tek.ind.pert.2019.29.3.307.

Lubis, N. Rizqi F., Dewi, R., Sulhatun, S., Ginting, Z., Muhammad, M., 2022. Biofoam Berbahan Pati Sagu Dengan Penguat Selulosa Tandan Kosong Kelapa Sawit Sebagai Kemasan Makanan dengan Metode Thermopressing. Chem. Eng.J. Stor. 2, 95. https://doi.org/10.29103/cejs.v2i3.6419

Mukminah, I. Al., 2019. Bahaya Wadah Styrofoam dan Alternatif Penggantinya. Farmasetika.Com (Online), 4, 32–34. https://doi.org/10.24198/farmasetika.v4i2.22589

Pornsuksomboon, K., Holló, B. B., Szécsényi, K. M., Kaewtatip, K., 2016. Properties of Baked Foams from Citric Acid Modified Cassava Starch and Native Cassava Starch Blends. Carbohyd. Polym. 136, 107–112. https://doi.org/10.1016/j.carbpol.2015.09.019

Putri, S. S., Harsojuwono, B. A., Anggreni, A. A. M. D., 2023. Pengaruh Konsentrasi Polivinil Alkohol dan Magnesium Stearat terhadap Karakteristik Bahan Pengemas Biokomposit Foam Tapioka dan Glukomanan. J. Ilmiah Teknol. Pertan. 8, 2–8.

Rahmatunisa, R., 2015. Pengaruh Penambahan Nanopartikel ZnO Dan Etilen Glikol pada Sifat Fungsional Kemasan Biodegradable Foam dari Tapioka dan Ampok Jagung. In IPB. Institut Pertanian Bogor.

Reddy, N., Yang, Y., 2010. Citric Acid Cross-Linking of Starch Films. Food Chem. 118, 702–711. https://doi.org/10.1016/j.foodchem.2009.05.050

Ritonga, A. U. M., Humaidi, S., Sembiring, K., 2019. Pembuatan dan Karakterisasi Biofoam Berbasis Komposit Serbuk Daun Keladi Yang Diperkuat Oleh Polivinil Asetat (PVAc). Tesis: Universitas Sumatra Utara, 1–2. https://doi.org/https://repositori.usu.ac.id/handle/123456789/20186

Sanguanwong, A., Flood, A. E., Ogawa, M., Martín-Sampedro, R., Darder, M., Wicklein, B., Aranda, P., Ruiz-Hitzky, E., 2021. Hydrophobic Composite Foams Based on Nanocellulose-Sepiolite for Oil Sorption Applications. J. Hazard. Mater. 417, 126068. https://doi.org/10.1016/j.jhazmat.2021.126068

Sarlinda, F., Hasan, A., Ulma, Z., 2022. Pengaruh Penambahan Serat Kulit Kopi dan PVA terhadap Karakteristik Biodegradable Foam dari Pati Kulit Singkong. J. Pengendal. Pencemar. Ling. 4, 9–20. https://doi.org/10.35970/jppl.v4i2.1430

Sumardiono, S., Pudjihastuti, I., Amalia, R., Yudanto, Y. A., 2021. Characteristics of Biodegradable Foam (Bio-foam) Made from Cassava Flour and Corn Fiber. IOP Conference Series: Mater. Sci. Eng. 1053, 012082. https://doi.org/10.1088/1757-899x/1053/1/012082

Utomo, P., Nizardo, N. M., Saepudin, E., 2020. Crosslink Modification of Tapioca Starch With Citric Acid as A Functional Food. AIP Conf. Proceed. 2242. https://doi.org/10.1063/5.0010364

Vercelheze, A. E. S., Fakhouri, F. M., Dall’Antônia, L. H., Urbano, A., Youssef, E. Y., Yamashita, F., Mali, S., 2012. Properties of Baked Foams Based on Cassava Starch, Sugarcane Bagasse Fibers and Montmorillonite. Carbohyd. Polym. 87, 1302–1310. https://doi.org/10.1016/j.carbpol.2011.09.016

Widiati, A. 2020. Peranan Kemasan (Packaging) dalam Meningkatkan Pemasaran Produk Usaha Mikro Kecil Menengah (UMKM) di “Mas Pack” Terminal Kemasan Pontianak. J. Audit Dan Akuntansi Fakultas Ekonomi Universitas Tanjungpura, 8, 67–76. https://doi.org/10.26418/jaakfe.v8i2.40670

Yuli, D., Aryanti, A., Utami, H., Lismeri, L., Haviz, M., 2021. Biofoam Berbahan Baku Campuran Pati dan Batang Sorgum. 02.

Zhang, X., Teng, Z., Huang, R., 2020. Polymers Biodegradable Starch/Chitosan Foam via Microwave Assisted Preparation: Morphology and Performance Properties. Polymers. 12, 1–17.

Zhang, Y., Haque, A. N. M. A., Naebe, M., 2023. UV-Functional Flexible Nanocomposite Film with High Lignin-Cellulose Nanocrystals Content. J. Mater. Researc. Technol. 26, 5990–6000. https://doi.org/10.1016/j.jmrt.2023.09.004

DOI

https://doi.org/10.21107/agrointek.v19i1.25350

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 I Wayan Arnata, Early Dea Kartika Fiano, I Gusti Ayu Lani Triani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.