Exploring the prospects of Calotropis gigantea as a sustainable source of fiber and cellulose

Lia Handayani, Sri Aprilia, Nasrul Nasrul, Muhammad Roil Bilad

Abstract

C. gigantea (CG) is a shrub that thrives in highlands with intricate limestone soils and coastal regions. Apart from the bark, the fruit's interior also contains fine fibers with exceptional potential as a fiber material. The abundant availability of this plant, coupled with the manual fiber extraction process, renders it an affordable and promising fiber source for various applications. This paper aims to explore the research progress on the coastal wild plant C.gigantea as a biomaterial, focusing on its utilization as fiber, cellulose, cellulose nanocrystals, and their applications. The study highlights the potential of C.gigantea in various fields, emphasizing its value as a sustainable resource for advanced material development and innovative applications. The method employed in this study involved collecting research findings from various sources, including reputable international journals and accredited national journals, published within the last 10 years. This approach ensures the inclusion of up-to-date and high-quality studies, providing a comprehensive overview of the topic. Numerous studies have delved into CG plant-based fibers and cellulose nanocrystals (CNCs) as viable solutions to provide raw materials for natural polymer applications. Research endeavors persist in the quest for new natural resources possessing suitable physical, chemical, and mechanical properties to supplant synthetic fibers. These endeavors aim to unveil novel cellulosic materials applicable across diverse fields, particularly in composite material production. CG stands out as an alternative natural fiber endowed with distinctive characteristics, notably its hollow fiber structure, contributing to its low-density nature and excellent thermal insulation properties. Its incorporation as a composite material enhances the overall physical and mechanical properties of the composite. This article presents a concise overview of the unique attributes of CG (bark and seedpod fibers) and their applications, both as cellulose and reinforcement materials.

Keywords

Calotropis gigantea; cellulose; Fibers; milkweed fibers; purple crown flower

Full Text:

PDF

References

Ahmed, M. J., M. S. Balaji, S. S. Saravanakumar, M. R. Sanjay, and P. Senthamaraikannan. 2018. Characterization of Areva javanica fiber – A possible replacement for synthetic acrylic fiber in the disc brake pad. Journal of Industrial Textiles 49:294–317.

Alam, M. A., M. R. Habib, F. Nikkon, and M. Rahman. 2008. Antimicrobial Activity of Akanda ( Calotropis gigantea L .) on Some Pathogenic Bacteria. Bangladesh Journal of Scientific and Industrial Research 43:397–404.

Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Physico-Chemical Properties of Alkali-Treated Acacia leucophloea Fibers. International Journal of Polymer Analysis and Characterization 20:704–713.

Ashori, A., and Z. Bahreini. 2009. Evaluation of calotropis gigantea as a promising raw material for fiber-reinforced composite. Journal of Composite Materials 43:1297–1304.

Ashori, A., and A. Nourbakhsh. 2010. Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites. Composites: Part B 41:578–581.

Bairagi, S. M., P. Ghule, and R. Gilhotra. 2018. Pharmacology of Natural Products : An recent approach on Calotropis gigantea and Calotropis procera. Ars Pharmaceutica 59:37–44.

Bismarck, A., S. Mishra, and T. Lampke. 2005. Plant fibers as reinforcement for green composites, in Natural Fibers. Biopolymers and Biocomposites. Pages 37–108 Natural Fibers, Biopolymers, and Biocomposites. Taylor & Francis.

Chandramohan, D., and J. Bharanichandar. 2014. Natural fiber reinforced polymer composites for automobile accessories. American Journal of Environmental Sciences 9:494–504.

Chen, Q., T. Zhao, M. Wang, and J. Wang. 2013. Studies of the fibre structure and dyeing properties of Calotropis gigantea, kapok and cotton fibres. Coloration Technology 129:448–453.

Elamanidar, S., N. Nurhayati, and L. Handayani. 2022. Pengaruh penambahan enzim protease getah reubek (Calotropis gigantea) terhadap protein tubuh ikan nila (Oreochromis niloticus). Tilapia 3:10–17.

Elfian, Mappiratu, and A. R. Razak. 2017. Penggunaan enzim protease kasar getah biduri untuk produksi cita rasa ikan teri (Stolephorus heterolobus). KOVALEN 3:122–133.

Fajriyati, F., N. Nurhayati, and A. Thaib. 2023. Pengaruh Getah Tanaman Biduri (Calotropis gigantae) terhadap Kadar Amonia Pada Media Pemeliharaan Ikan Nila (Oreochromis niloticus). Jurnal TILAPIA 4:8–19.

Farida, Z., N. Nurhayati, and L. Handayani. 2022. Aplikasi penggunaan enzim protease kasar tanaman biduri (Calotropis gigantea) pada pakan ikan nila (Oreochromis niloticus). Tilapia 3:84–93.

Ganeshan, P., B. NagarajaGanesh, P. Ramshankar, and K. Raja. 2018. Calotropis gigantea fibers: A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23:271–277.

Gao, A., H. Chen, J. Tang, K. Xie, and A. Hou. 2020. Efficient extraction of cellulose nanocrystals from waste Calotropis gigantea fiber by SO42-/TiO2 nano-solid superacid catalyst combined with ball milling exfoliation. Industrial Crops and Products 152:1–8.

Gupta, P. K. 2018. Poisonous plants. Pages 309–329 in P. K. B. T.-I. T. Gupta, editor. Illustrated Toxicology. 1st edition. Academic Press.

Handayani, L., S. Aprilia, N. Arahman, and M. R. Bilad. 2024. Assessment of fibers from different part of the Calotropis gigantea biomass as a filler of composites foam PVA / PVP. South African Journal of Chemical Engineering 49.

Hassan, M. H. A., M. A. Ismail, A. M. Moharram, and A. A. M. Shoreit. 2017. Phytochemical and Antimicrobial of Latex Serum of Calotropis Procera and its Silver Nanoparticles Against Some Reference Pathogenic Strains. Journal of Ecology of Health & Environment 5:65–75.

Hassanzadeh, S., and H. Hasani. 2017. A review on milkweed fiber properties as a high-potential raw material in textile applications. Journal of Industrial Textiles 46:1412–1436.

Jeyapragash, R., S. Sathiyamurthy, V. Srinivasan, R. Prithivirajan, and G. Swaminathan. 2022. Properties and Characteristics of Alkali Treated Calotropis Gigantea Fiber-Reinforced Particle-Filled Epoxy Composites. Composites Theory and Practice 22:99–105.

Karimah, A., M. R. Ridho, S. S. Munawar, Ismadi, Y. Amin, R. Damayanti, M. A. R. Lubis, A. P. Wulandari, Nurindah, A. H. Iswanto, A. Fudholi, M. Asrofi, E. Saedah, N. H. Sari, B. R. Pratama, W. Fatriasari, D. S. Nawawi, S. M. Rangappa, and S. Siengchin. 2021. A comprehensive review on natural fibers: Technological and socio-economical aspects. Polymers 13.

Maji, S., R. Mehrotra, and S. Mehrotra. 2013a. Extraction of high quality cellulose from the stem of Calotropis procera. South Asian Journal of Experimental Biology 3:113–118.

Maji, S., R. Mehrotra, and S. Mehrotra. 2013b. Extraction of high quality cellulose from the stem of Calotropis procera. South Asian J Exp Biol 3:113–118.

Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, A. Khan, and A. M. Asiri. 2020a. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801.

Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, A. Khan, and A. M. Asiri. 2020b. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801.

Nisah, K. 2018. Sintesis Dan Karakteristik Batang Tanaman Rubik (Calotropis Gigantea) Sebagai Matriks Plastik Biodegradable. Lantanida Journal 6:12.

Nourbakhsh, A., A. Ashori, and M. Kouhpayehzadeh. 2009. Giant milkweed (Calotropis persica) fibers - A potential reinforcement agent for thermoplastics composites. Journal of Reinforced Plastics and Composites 28:2143–2149.

Novarini, E., and M. D. Sukardan. 2015. Potensi Serat Rami (Boehmeria Nivea S. Gaud) Sebagai Bahan Baku Industri Tekstil Dan Produk Tekstil Dan Tekstil Teknik. Arena Tekstil 30:113–122.

Oun, A. A., and J. Rhim. 2016. Characterization of nanocelluloses isolated from Ushar ( Calotropis procera ) seed fi ber : Effect of isolation method. Materials Letters 168:146–150.

Parihar, G., and N. Balekar. 2016. Calotropis procera: A phytochemical and pharmacological review. Thai Journal of Pharmaceutical Sciences 40:115–131.

Qi, Y., F. Xu, L. Cheng, R. Zhang, L. Liu, W. Fan, B. Zhu, and J. Li. 2018. Evaluation on a Promising Natural Cellulose Fiber- Calotropis Gigantea Fiber. Trends Textile Engineering & Fashion Technology 2:205–211.

Ramasamy, R., K. Obi Reddy, and A. Varada Rajulu. 2018. Extraction and Characterization of Calotropis gigantea Bast Fibers as Novel Reinforcement for Composites Materials. Journal of Natural Fibers 15:527–538.

Song, K., X. Zhu, W. Zhu, and X. Li. 2019. Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresources and Bioprocessing 6.

Srinivas, C. A., and G. D. Babu. 2013. Mechanical and Machining Characteristics of Luffa Aegytiaca Fiber Reinforced Plastics. International Journal of Engineering Research & Technology 2:1524–1530.

Sukardan, M. D., D. Natawijaya, P. Prettyanti, C. Cahyadi, and E. Novarini. 2017. Karakterisasi Serat Dari Tanaman Biduri (Calotropis Gigantea) Dan Identifikasi Kemungkinan Pemanfaatannya Sebagai Serat Tekstil. Arena Tekstil 31:51–62.

Tarabi, N., H. Mousazadeh, A. Jafari, and J. Taghizadeh-Tameh. 2015. Design, construction and evaluation of a fiber extracting machine from Calotropis (milkweed) stems. Engineering in Agriculture, Environment and Food 8:88–94.

Vinod, A., R. Vijay, and D. L. Singaravelu. 2018. ThermoMechanical Characterization of Calotropis gigantea Stem Powder-Filled Jute Fiber-Reinforced Epoxy Composites. Journal of Natural Fibers 15:648–657.

Yoganandam, K., P. Ganeshan, B. NagarajaGanesh, and K. Raja. 2020. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. Journal of Natural Fibers 17:1706–1718.

Zheng, Y., E. Cao, Y. Zhu, A. Wang, and H. Hu. 2016. Perfluorosilane treated Calotropis gigantea fiber: Instant hydrophobic-oleophilic surface with efficient oil-absorbing performance. Chemical Engineering Journal 295:477–483.

DOI

https://doi.org/10.21107/agrointek.v19i2.24200

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Lia Handayani, Sri Aprilia, Nasrul Nasrul, Muhammad Roil Bilad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.