Sintesis dan karakterisasi metil selulosa dari kulit biji kakao dengan response surface method

Atia Fizriani, Woro Setiaboma, Djagal Wiseso Marseno, Supriyanto Supriyanto

Abstract

The cocoa shell, a by-product of the cacao industry, is a potent source of cellulose, which can be modified into its derivatives in the food industry. One of these derivatives is methylcellulose (MC) that is performed by methylation using dimethyl sulfate. The synthesis process of methylcellulose can affect its characteristics. Food-grade methylcellulose typically had a degree of substitution (DS) ranging from 1.45 to 2.00. This study aimed to determine the optimum conditions for synthesizing food-grade MC and to characterize its properties. The synthesis of MC involved three variables: the concentration of NaOH solution, dimethyl sulfate addition, and methylation temperature. The synthesis of MC was optimized using Response Surface Methodology (RSM) central composite design (CCD) based on its degree of substitution (DS). Several characteristics of the MC were analyzed, including its degree of substitution (DS), oil-holding capacity (OHC), water-holding capacity (WHC), lightness, and crystallinity.The results indicated that the optimal conditions for synthesizing MC were a NaOH concentration of 21.29% (w/v), dimethyl sulfate addition of 3.62 ml, and a temperature of 51.09 C for 180 minutes. The properties of the optimized MC were DS 1.93±0.04, OHC 2.53±0.05 g/g, WHC 3.04±0.10 g/g, lightness 84.32±0.67 g/g, solubility 11.94±1.04% (db), and crystallinity index 40.21%. These research findings provide valuable knowledge about the ideal conditions for synthesizing food-grade MC and offer insights into its properties, thus facilitating its potential applications in the food industry.

Keywords

Cacoa shells; Center composite design (CCD); Degree of substitution; methyl cellulose (MC); response surface methodology (RSM);

References

Betts, W. B., R. K. Dart, A. S. Ball, and S. L. Pedlar. 1991. Biosynthesis and Structure of Lignocellulose(January):139–155.

ÇelikÇi, N., C. A. Ziba, and M. Dolaz. 2022. Synthesis and Characterization Of Carboxymethyl Cellulose ( CMC ) From Different Waste. Cellulose Chemistry and Technology 56(Cmc):55–68.

Ferdiansyah, M. K., D. W. Marseno, and Y. Pranoto. 2017. Optimasi Sintesis Karboksi Metil Selulosa (CMC) dari Pelepah Kelapa Sawit Menggunakan Response Surface Methodology (RSM). Agritech 37(2):158.

Filho, G. R., R. M. N. de Assunção, J. G. Vieira, C. da S. Meireles, D. A. Cerqueira, H. da Silva Barud, S. J. L. Ribeiro, and Y. Messaddeq. 2007. Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polymer Degradation and Stability 92(2):205–210.

Juarez-Enriquez, E., I. Salmeron-Ochoa, N. Gutierrez-Mendez, H. S. Ramaswamy, and E. Ortega-Rivas. 2015. Shelf life studies on apple juice pasteurised by ultrahigh hydrostatic pressure. Lwt 62(1):915–919.

Kausar, T., M. A. Kausar, S. Khan, and S. Haque. 2021. Optimum Additive Composition to Minimize Fat in Functional Goat Meat Nuggets : A Healthy Red Meat Functional Food.

Keshani, S., A. Luqman Chuah, M. M. Nourouzi, A. R. Russly, and B. Jamilah. 2010. Optimization of concentration process on pomelo fruit juice using response surface methodology (RSM). International Food Research Journal 17(3):733–742.

Klunklin, W., K. Jantanasakulwong, Y. Phimolsiripol, N. Leksawasdi, P. Seesuriyachan, T. Chaiyaso, C. Insomphun, S. Phongthai, P. Jantrawut, S. R. Sommano, W. Punyodom, A. Reungsang, T. M. P. Ngo, and P. Rachtanapun. 2021. Synthesis, characterization, and application of carboxymethyl cellulose from asparagus stalk end. Polymers 13(1):1–15.

Mussatto, S., and J. Teixeira. 2010. Lignocellulose as raw material in fermentation processes. applied Microbiology an Microbial Biotechnology 2:897–907.

Nguyen Thoai, D., C. Tongurai, K. Prasertsit, and A. Kumar. 2018. Predictive Capability Evaluation of RSM and ANN in Modeling and Optimization of Biodiesel Production from Palm (Elaeisguineensis) Oil. International Journal of Applied Engineering Research 13(10):7529–7540.

Perkebunan, D. J. 2021. Produksi Kakao Menurut Provinsi di Indonesia , 2017 - 2021 Cocoa Production by Province in Indonesia , 2017 - 2021 2021:2021.

Rahmidar, L., I. Nurilah, and T. Sudiarty. 2018. Karakterisasi Metil Selulosa Yang Disintesis Dari Kulit Jagung (Zea Mays). PENDIPA Journal of Science Education 2(1):117–122.

Redgwell, R., V. Trovato, S. Merinat, D. Curti, S. Hediger, and A. Manez. 2003. Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chemistry 81(1):103–112.

Rojo-Poveda, O., L. Barbosa-Pereira, L. Mateus-Reguengo, M. Bertolino, C. Stévigny, and G. Zeppa. 2019. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients 11(4):1–19.

Setiaboma, W., A. Fizriani, D. W. Marseno, and Supriyanto. 2024. Optimization of carboxy methyl cellulose (CMC) from cacao (Theobroma cacao L.) shells using respond surface methodology. AIP Conference Proceedings 2973(1):050011.

Šimurina, O. D., B. V Filipčev, B. D. Marić, B. R. Cvetković, and M. I. B. Solarov. 2014. Comparative Study On The Physico-Chemical , Textural And Thermal Properties Of Instant Porridges Based On. Food and Feed Research 45(1):27–35.

Singh, R. K. 2013. Methylcellulose synthesis from corn cobs: Study of the effect of solvent conditions on product properties by thermal analysis. Journal of thermal analysis and calorimetry 114:809–819.

Utami, R. R., Jamilah, R. Wahyudi, W. P. Tangkin, I. Thamrin, A. N. Amalia, D. Indriana, Rosniati, M. Yumas, A. Assa, and M. Ariyanti. 2021. Antioxidant activities of cocoa bean shell from North Luwu and Gunungkidul as an active compound of packaging material. IOP Conference Series: Earth and Environmental Science 743(1).

Vieira, J. G., G. R. Filho, C. D. S. Meireles, F. A. C. Faria, D. D. Gomide, D. Pasquini, S. F. D. Cruz, R. M. N. De Assunção, and L. A. D. C. Motta. 2012. Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polimeros 22(1):80–87.

Viera, R. G. P., G. R. Filho, R. M. N. de Assunção, C. da Carla, J. G. Vieira, and G. S. de Oliveira. 2007. Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers 67(2):182–189.

Worku Kidane, S. 2021. Application of Response Surface Methodology in Food Process Modeling and Optimization. Response Surface Methodology in Engineering Science(October).

Yeasmin, M. S., and M. I. H. Mondal. 2015. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International Journal of Biological Macromolecules 80(December 2017):725–731.

DOI

https://doi.org/10.21107/agrointek.v18i2.19669

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Woro Setiaboma, Atia Fizriani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.