Effect of NaCI solution concentration, particle size and ratio on viscosity inhibitor of porang flour

Mohammad Amirul Muzakki, Erliza Noor, Anto Tri Sugiarto

Abstract

Porang flour has a fairly high glucomannan content, up to 65%, which can accelerate the formation or viscosity process in porang flour. The high viscosities cannot be applied to rotating flow nozzle-type hydrodynamic cavitation devices designed to form cavitation bubbles during degradation. In this study, the preeminent process parameters will be sought, especially for particle size, concentration of NaCl solution, and the ratio (porang flour : NaCl solution: isopropyl alcohol) to the inhibition of viscosity formation at porang flour. It aims to analyze those factors effect on viscosity inhibition to support the performance of cavitation bubble formation during the process of breaking cell walls in porang flour. This process was carried out in a factorial complete randomized design (CRD) on all 3 factors with 2 repetitions. The results show that the factor of particle size, the concentration of NaCl, and the ratio significantly affected the decrease in the viscosity of porang flour. Large particle sizes with high concentrations of NaCl can reduce the viscosity level up to 10 cP. The results of the addition of isopropyl alcohol in the ratio (mesh size 40: 5% NaCl: isopropyl alcohol) at a concentration of 2.5% can produce a viscosity of up to <10 cP with a gel level in the sample that is more invisible and not concentrated. In the experimental stage using the swirling flow nozzle type hydrodynamic cavitation technique with the selected formulation, it was seen that the calcium oxalate diminution in porang flour was up to 97.2 mg/100g with a degradation percentage of 52.63%. The residual calcium oxalate in porang flour contradicted the standard for human body tolerance, explicitly 71 mg/100g. Therefore, the resultant flour is not safe to consume. Furthermore, the yield of calcium oxalate at this experimental stage still does not meet SNI 7938:2020, that is, 30 g/100g.

Keywords

Isopropyl Alcohol; Microbubble; NaCl Solution; Porang Flour; Viscosity

Full Text:

PDF

References

Alam HS, Soetikno P, Soelaiman TAF, Sugiarto AT. 2020. Population Balance and Computational Fluid Dynamics Modeling of Swirl Flow Microbubble Generator. Di dalam: International Conference on Sustainable Energy Engineering and Application (ICSEEA). hlm 1–7.

Alam HS, Sutikno P, Fauzi Soelaiman TA, Sugiarto AT. 2022. CFD-PBM Coupled modeling of bubble size distribution in a swirling-flow nanobubble generator. Eng Appl Comput Fluid Mech. 16(1):677–693. doi:10.1080/19942060.2022.2043186.

Alam HS, Sutikno P, Soelaiman TAF, Sugiarto AT. 2021. Bulk Nanobubbles: generation using a two-chamber swirling flow nozzle and long-term stability in water. J Flow Chem.(0123456789):01–20. doi:10.1007/s41981-021-00208-8.

Anindita F, Syaiful B, Hardi J. 2016. Extraction and characterization of glucomannan from salak (Salacca edulis reinw) seed flours. J Ris Kim. 2(2):1–30.

Cao YQ, Huang GQ, Li XD, Guo LP, Xiao JX. 2021. Complex coacervation of carboxymethyl konjac glucomannan and ovalbumin and coacervate characterization. J Dispers Sci Technol. 67:1–11. doi:10.1080/01932691.2021.1888747.

Dai S, Corke H, Shah N. 2016. Utilization of konjac glucomannan as a fat replacer in low-fat and skimmed yogurt. J Dairy Sci. 99(9):7063–7074. doi:10.3168/jds.2016-11131.

Erawati E, Arifah EF. 2018. Making Actived Carbon From Teak Wood Saws (Tectona grandis L,f) (Particle Size and Activator Type). in the : The 8th University Research Colloquium 2018. hlm 97–104.

Erizal, Perkasa D., Sulistioso G., Sudirman, Juniarti Z, Hariyanti. 2017. Synthesis and Characterization of Biodegradable Hydrogel Superabsorbent Poly (Potassium Acrylate)-g-Glukomannan Using Gamma Irradiation Technique. Sains Mater Indones. 19(1):32–38.

Ermawati Y, Harini N, Winarsih S. 2019. The Characteristic of Porang Flour (Amorphophallus muelleri Blume) Purification Use Ethanol and The Application as Subtitution Agent on Chicken Sausage. Food Technol Halal Sci J. 1(1):33. doi:10.22219/fths.v1i1.7545.

Fatmawati S, Nurgraheni B, Setyani D. 2013. Ultrasonic Assisted Extraction and Determination of Glukomannan Levels in Porang Flour (Amorphophallus oncophyllus Prain ex Hook.f.). Media Farm Indones. 11(2):1075–1083.

Fu T, Ma Y, Funfschilling D, Li HZ. 2009. Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci. 64(10):2392–2400. doi:10.1016/j.ces.2009.02.022.

Golykh R, Shalunov A, Khmelev V, Lopatin R, Minakov V, Shakura V. 2020. Evaluation of optimum modes and conditions providing increasing ultrasonic cavitation area in high-viscous and non-newtonian fluids. Rom J Acoust Vib. 17(2):101–108.

Hardyawan S, Matoetina M, Setijawati E. 2012. The Effect of NaCI Concentration Variations in the Washing Stage on the Physicochemical Properties of Surimi-Based Broiler Products. J Teknol Pangan dan Gizi. 11(2):37–46. http://jurnal.wima.ac.id/index.php/JTPG/article/view/1473.

Koswara. 2009. Tuber Processing Technology Module, Part 2. Porang Tuber Processing.

Levitsky I, Tavor D, Gitis V. 2016. Generation of Two-Phase Air-Water Flow with Fine Microbubbles. Chem Eng Technol. 39(8):1537–1544. doi:10.1002/ceat.201500492.

Liu C, Chen Y, Chen J. 2010. Synthesis and characteristics of pH-sensitive semi-interpenetrating polymer network hydrogels based on konjac glucomannan and poly(aspartic acid) for in vitro drug delivery. Carbohydr Polym. 79(3):500–506. doi:10.1016/j.carbpol.2009.08.024.

Ma Y, Su D, Wang Y, Li D, Wang L. 2020. Effects of concentration and NaCl on rheological behaviors of konjac glucomannan solution under large amplitude oscillatory shear (LAOS). Food Sci Technol. 128:109466. doi:10.1016/j.lwt.2020.109466.

Mawarni R., Widjanarko S. 2015. Grinding by ball mill with chemical purification on reducing oxalate in porang flour. J Pangan dan Agroindustri. 3(2):571–581.

Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. 2020. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes. 8(5):1–18. doi:10.3390/PR8050549.

Mi S, Fu T, Zhu C, Jiang S, Ma Y. 2020. Mechanism of bubble formation in step-emulsification devices. AIChE J. 66(1):01–11. doi:10.1002/aic.16777.

Mubarok AZ, Ananda FY. 2020. Effect of concentration of porang flour and temperature on rheological properties of tomato ketchup. IOP Conf Ser Earth Environ Sci. 475(1):01–07. doi:10.1088/1755-1315/475/1/012034.

Mursalin M, Hariyadi P, Soekarto S. 2020. Effect of the Surface Area of Quicklime Lumps on the Drying Rate of Catfish Fillets. J BiGME. 1(1):46–52.

Pourjavadi A, Soleyman R, Barajee GR. 2008. Novel nanoporous superabsorbent hydrogel based on poly(acrylic acid) grafted onto salep: Synthesis and swelling behavior. Starch/Staerke. 60(9):467–475. doi:10.1002/star.200700706.

Salsabila AL, Fahruroji I. 2021. Hydrolysis in Corn Starch-based Sugar Synthesis. Edufortech. 6(1):33–38. doi:10.17509/edufortech.v6i1.33289.

Sefa-Dedeh S, Agyir-Sackey EK. 2004. Chemical composition and the effect of processing on oxalate content of cocoyam Xanthosoma sagittifolium and Colocasia esculenta cormels. Food Chem. 85(4):479–487. doi:10.1016/S0308-8146(02)00244-3.

Setiawati E, Bahri S, Razak AR. 2017. Extraction of Tuber Porang Glucomannan [(Amorphophallus Paeoniifolius (Dennst.) Nicolson]. J Ris Kim. 3(3):234–241.

Sheng L, Chen Y, Wang K, Deng J, Luo G. 2021. General rules of bubble formation in viscous liquids in a modified step T-junction microdevice. Chem Eng Sci. 239(1):116621. doi:10.1016/j.ces.2021.116621.

Solihudin S, Noviyanti AR, Rahayu I. 2017. Effect of Rice Husk Charcoal Particle Size and Reflux Time on Ash Content of Rice Husk Carbon Absorption. J Natur Indones. 17(1):33. doi:10.31258/jnat.17.1.33-41.

Su K, Wu J, Xia D. 2020. Classification of regimes determining ultrasonic cavitation erosion in solid particle suspensions. Sonochemistry. 68:105214. doi:10.1016/j.ultsonch.2020.105214.

Suharti S, Sulastri Y, Alamsyah A. 2019. The Effect of NaCI Soaking Time and Drying Time on The Quality of Belitung Taro Flour (Xanthosama sagittifolium). Pro Food. 5(1):402–413. doi:10.29303/profood.v5i1.96.

Supardan MD, Satriana, Moulana R. 2014. In Situ Transesterification of Jatropha Seed Using Hydrodynamic Cavitation. Agritech. 34(1):43–49.

Susilo EJ, Dharma US, Irawan D. 2021. Effect of Fuel Viscosity on Fluid Flow Characteristics in Centrifugal Pumps. ARMATUR. 2(1):27–32.

Tester R, Al-Ghazzewi F. 2017. Glucomannans and nutrition. Di dalam: Food Hydrocolloids. Volume ke-68. Elsevier Ltd. hlm 246–254.

Wu J, Deng X, Lin X. 2013. Swelling characteristics of konjac glucomannan superabsobent synthesized by radiation-induced graft copolymerization. Radiat Phys Chem. 83:90–97. doi:10.1016/j.radphyschem.2012.09.026.

Xiao JX, Wang LH, Xu TC, Huang GQ. 2019. Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. Int J Biol Macromol. 123:436–445. doi:10.1016/j.ijbiomac.2018.11.086.

Ye L, Zhu X, Wei X, Wu S. 2020. Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation. Ultrason Sonochem. 67 May:01–07. doi:10.1016/j.ultsonch.2020.105175.

Zhang K, Yang W, Xu B, Chen Y, Yin X, Liu Y, Zuo H. 2018. Inhibitory effect of konjac glucomanan on pitting corrosion of AA5052 aluminium alloy in NaCl solution. J Colloid Interface Sci. 517:52–60. doi:10.1016/j.jcis.2018.01.092.

DOI

https://doi.org/10.21107/agrointek.v19i1.17543

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Mohammad Amirul Muzakki, Erliza Noor, Anto Tri Sugiarto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.