Peningkatan kualitas nira sorgum manis (Sorghum bicolor L) dan potensinya sebagai substrat fermentasi asam glutama

Rozalia Rozalia, Mulyorini Rahayuningsih, Mohamad Yani

Abstract

Sweet sorghum is the potential in Indonesia to be used as a fermentation medium for glutamic acid production. The sorghum plant resembles sugar cane which has sap in the stem. Sorghum is a plant with high sugar content and high biomass productivity. The high sugar content in sorghum sap is known from the total dissolved solids. The evaporation process on sorghum juice increases the sugar content and can inactivate microbial activity. Glutamic acid fermentation needs a substrate source derived from sugar for the growth of the producing microbes.  Therefore, this study aims to describe the sugar content in sorghum juice before and after the evaporation process so that it can be used as a substrate source for glutamic acid production. This research was carried out using the evaporation method of sorghum juice for 15 minutes at a temperature of 85 - 100 oC, so a concentrated sorghum sap was obtained. The analysis was pH, total dissolved solids (oBrix) using a refractometer, and reducing sugar content using the DNS method. The results obtained in this study indicated a significant increase in the quality and sugar content of sorghum sap with a pH of 4.81 ± 0.01 to 5.55 ± 0.03, total dissolved solids from 10.44 ± 0.09 to 34.80 ± 0.02 (oBrix), and reduced sugar content from 114.10 ± 0.45 to 271.74 ± 0.26 g/l. The sugar content allows sorghum juice to be used as raw material in industrial microbiology, especially for the production of glutamic acid.

Keywords

evaporation; sorghum; sugar content

References

Alharbi, N.S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., Innasimuthu, G. M., Rajoo, B, Alanzi, K F. Rajaram, S. 2019. Optimization of glutamic acid production by Corynebacterium glutamicum using response surface methodology, Journal of King Saud University - Science. 32(2) 1403-1408. https://doi.org/10.1016/j.jksus.2019.11.034.

Amin, G. A., & Al-Talhi, A. 2007. Production of L-glutamic Acid by Immobilized Cell Reactor of the Bacterium Corynebacterium glutamicum Entrapped into Carrageenan Gel Beads. World Applied Sciences Journal, 2(1), 62–67.

Andrzejewski, B., Eggleston, G., Lingle, S., & Powell, R. 2013. Development of a sweet sorghum juice clarification method in the manufacture of industrial feedstocks for value-added fermentation products. Industrial Crops and Products, 44, 77–87. https://doi.org/10.1016/j.indcrop.2012.10.028

Appiah-Nkansah, N. B., Saul, K., Rooney, W. L., & Wang, D. 2015. Adding sweet sorghum juice into current dry-grind ethanol process for improving ethanol yields and water efficiency. International Journal of Agricultural and Biological Engineering, 8(2), 97–103. https://doi.org/10.3965/j.ijabe.20150802.1513

Appiah-Nkansah NB, Li J, Rooney W, Wang D. 2019. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew Energy. 143:1121–1132. doi:10.1016/j.renene.2019.05.066

Bailey, M. J., Biely, P. and Kaisa, P. 1992 Interlaboratory testing of methods for assay of xylanase activity. 23, 257– 270.

Cao, Y., Duan, Z. and Shi, Z. 2014. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum, World Journal of Microbiology and Biotechnology, 30(2), 461–468. doi: 10.1007/s11274-013-1468-0.

Das, K., Anis, M., Azemi, B., & Ismail, N. 1995. Fermentation and Recovery of Glutamic Acid from Palm Waste Hydrolysate by Ion-Exchange Resin Column. 48, 551–555.

Eggleston, G., DeLucca, A., Sklanka, S., Dalley, C., St. Cyr, E., & Powell, R. (2015). Investigation of the stabilization and preservation of sweet sorghum juices. Industrial Crops and Products, 64, 258–270. doi:10.1016/j.indcrop.2014.09.008

Fahimitabar, A., Razavian, S. M. H., & Rezaei, S. A. 2021. Application of RSM for optimization of glutamic acid production by Corynebacterium glutamicum in bath culture. Heliyon, 7(6), e07359. https://doi.org/10.1016/j.heliyon.2021.e07359

Ganguly, S., and Pattnaik, S. 2021. Empirical optimization of culture conditions for l- glutamic acid production by corynebacterium glutamicum x680’, Tjyybjb.Ac.Cn, 12(1), pp. 536–546. doi: 10.13040/IJPSR.0975-8232.12(1).536-46.

Jardim, A. M. da R. F., Silva, G. Í. N. da, Biesdorf, E. M., Pinheiro, A. G., Silva, M. V. da, Araújo Júnior, G. do N., Santos, A. dos, Alves, H. K. M. N., Souza, M. de S., Morais, J. E. F. de, Alves, C. P., & Silva, T. G. F. da. 2020. Potencial produtivo da cultura do Sorghum bicolor (L.) Moench no semiárido brasileiro: revisão. Pubvet, 14(4), 1–12. https://doi.org/10.31533/pubvet.v14n4a550.1-13

Jyothi, A. N., Sasikiran, K., Nambisan, B., & Balagopalan, C. 2005. Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochemistry, 40(11), 3576–3579. https://doi.org/10.1016/j.procbio.2005.03.046

Kawahigashi, H., Kasuga, S., Okuizumi, H., & Hiradate, S. 2013. Evaluation of Brix and sugar content in stem juice from sorghum varieties. 11–19. https://doi.org/10.1111/grs.12006

Khalil, S. R. A., Abdelhafez, A. A., & Amer, E. A. M. 2015. Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Annals of Agricultural Sciences, 60(2), 317–324. https://doi.org/10.1016/j.aoas.2015.10.005

Kinoshita, S. 1967. On Amino Acids Fermentation. In Journal of the Food Hygienic Society of Japan (Vol. 8, Issue 3).https://doi.org/10.3358/shokueishi.8.197

Liliane, M., Sousa, H. G. De, & Lílian, M. 2019. Acta Scientiarum Growth and photosynthetic parameters of saccharine sorghum plants subjected to salinity. 41, 1–9. https://doi.org/10.4025/actasciagron.v41i1.42607

Lueschen, W. E., Putnam, D. H., Kanne, B. K., & Hoverstad, T. R. 1991. Agronomic Practices for Production of Ethanol from Sweet Sorghum. Journal of Production Agriculture, 4(4), 619–625. https://doi.org/10.2134/jpa1991.0619

Mortensen, A., & Larsen, J. C. 2012. Risk assessment of sweeteners used as food additives. Sweeteners: Nutritional Aspects, Applications, and Production Technology, 419–435. https://doi.org/10.1201/b12065

Mukabane, B. G., Thiongo, G., Gathitu, B., Murage, H., Ojijo, N. O., & Willis, O. 2014. Evaluating the Potential of Juice from Some Sweet Sorghum Varieties Grown In Kenya to Crystallize. Food Science and Quality Management, 30, 31–40.

Nampoothiri, K. M., & Pandey, A. 1999. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column. Revista de Microbiologia, 30(3), 258–264. https://doi.org/10.1590/S0001-37141999000300013

O’Hara, I., Kent, G., Alberston, P., Harrison, M., Hobson, P., Mckenzie, N., Moghaddam, L., Moller, D., Rainey, T., Stolz, W., Wong, H.-H., & Ellet, B. 2013. Sweet sorghum: Opportunities for a new renewable fuel and food industry in Australia. In International Crops Research Institute for the Semi-Arid Tropics. Rural Industries Research and Development Corporation.

Phutela, U. G., & Kaur, J. 2014. Process Optimization for Ethanol Production from Sweet Sorghum Juice Using Saccharomyces cerevisiae Strain NRRL Y-2034 by Response Surface Methodology. Sugar Tech, 16(4), 411–421. https://doi.org/10.1007/s12355-013-0283-0

Regassa, T. H., & Wortmann, C. S. 2014. ScienceDirect Sweet sorghum as a bioenergy crop : Literature review. Biomass and Bioenergy, 64, 348–355. https://doi.org/10.1016/j.biombioe.2014.03.052

Shimizu, H., & Hirasawa, T. 2006. Production of Glutamate and Glutamate-Related Amino Acids: Molecular Mechanism Analysis and Metabolic Engineering. Microbiol. Monogr., 5(December), 1–38. https://doi.org/10.1007/7171

Shyamkumar, R., Ganesh Moorthy, I. M., Ponmurugan, K., & Baskar, R. 2014. Production of L-glutamic acid with corynebacterium glutamicum (NCIM 2168) and pseudomonas reptilivora (NCIM 2598): A study on immobilization and reusability. Avicenna Journal of Medical Biotechnology, 6(3), 163–168.

Syarif, R. S., Nuryadi, A. M., Sulistyorini, J., & Sukron, A. 2021. Pengaruh Penambahan Glukosa Dan Derajat Brix Untuk Menghambat Proses Kristalisasi Pada Produk Gula Cair Nira Aren Additional Glucose and the Effect of Brix Degree To Inhibite the Crystalization Process in Liquid Sugar Products. Jurnal Penelitian Teknologi Industri, 13(1), 27–36.

Wu, X., Staggenborg, S., Propheter, J. L., Rooney, W. L., Yu, J., & Wang, D. 2010. Features of sweet sorghum juice and their performance in ethanol fermentation. 31, 164–170.

DOI

https://doi.org/10.21107/agrointek.v18i1.17183

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Rozalia Rozalia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.