Pengaruh penggantian lemak kakao oleh glukomanan porang dan lesitin terhadap sifat fisik cokelat hitam (Dark chocolate)

Aji Sutrisno, Panji achmad apriyandi

Abstract

A Low-fat dark chocolate was developed by replacing cocoa butter with porang glucomannan and lecithin addition. The study was to determine the effect of cocoa butter replacement levels by porang glucomannan (10%, 15%, 20%) and lecithin (1%, 1.5%, 2%) on the melting point, hardness, cohesiveness, springiness , gumminess, chewiness, color, and glossiness of dark chocolate which was using a factorial group randomized design with ANOVA and continued with the Tukey HSD test. The results showed that not interaction of the level of cocoa butter replacement by glucomannan and lecithin on melting point. The cocoa butter replacement level by porang glucomannan and lecithin and their interactions affected hardness, cohesiveness, springiness , gumminess, chewiness, color, and glossiness. The higher level of cocoa butter replacement levels by porang glucomannan and lecithin increased the melting point and hardness of dark chocolate. Porang glucomannan and lecithin can be used to reduce cocoa butter and can improve the physical properties of dark chocolate.

Keywords

cocoa butter; dark chocolate; fat replacer; low-fat; lecithin; porang glucomannan; physical properties

References

Aidoo, R.P., Afoakwa, E.O., Dewettinck, K. 2014. Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture - Rheological, microstructure and physical quality characteristics. Journal of Food Engineering, 126, 35–42. https://doi.org/10.1016/j.jfoodeng.2013.10.036

Akesowan, A. 2019. Optimization of sugar-free konjac gel texture containing erythritol-sucralose sweetener for producing healthy jam *Akesowan,. Food Research, 3(June), 241–248.

Amir, Sharon, Syafiq, W.X.R., Amir, I.Z., Sharon, W.X.R., Syafiq, A. 2013. D-optimal mixture design on melting and textural properties of dark chocolate as affected by cocoa butter substitution with xanthan gum/guar gum blends. International Food Research Journal, 20(4), 1991–1995.

Asmawit. 2012. Penelitian substitusi lemak kakao dengan lemak kelapa sawit dalam pembuatan coklat batang. Biopropal Industri, 3(1), 17–21.

Buda, U., Priyadarshini, M.B., Majumdar, R. K., Mahanand, S.S., Patel, A.B., Mehta, N.K. 2021. Quality characteristics of fortified silver carp surimi with soluble dietary fiber: Effect of apple pectin and konjac glucomannan. International Journal of Biological Macromolecules, 175, 123–130. https://doi.org/10.1016/j.ijbiomac.2021.01.191

Caparosa, M.H., Hartel, R.W. 2020. Characterizing Lecithin Interactions in Chocolate Using Interfacial Properties and Rheology. JAOCS, Journal of the American Oil Chemists’ Society. https://doi.org/10.1002/aocs.12419

da Silva, D.F., Barbosa de Souza Ferreira, S., Bruschi, M.L., Britten, M., Matumoto-Pintro, P.T. 2016. Effect of commercial konjac glucomannan and konjac flours on textural, rheological and microstructural properties of low fat processed cheese. Food Hydrocolloids, 60, 308–316. https://doi.org/10.1016/j.foodhyd.2016.03.034

Dickinson, E. 2018. Hydrocolloids acting as emulsifying agents – How do they do it? Food Hydrocolloids, 78, 2–14. https://doi.org/10.1016/j.foodhyd.2017.01.025

Francis, F.P., Chidambaram, R. 2019. Hybrid hydrogel dispersed low fat and heat resistant chocolate. Journal of Food Engineering, 256(September 2018), 9–17. https://doi.org/10.1016/j.jfoodeng.2019.03.012

Garti, N., Aserin, A. 2012. Effect of Emulsifiers on Cocoa Butter and Chocolate Rheology, Polymorphism, and Bloom. In Cocoa Butter and Related Compounds. AOCS Press. https://doi.org/10.1016/B978-0-9830791-2-5.50015-3

Glicerina, V., Balestra, F., Dalla Rosa, M., Romani, S. 2016. Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. Journal of Food Engineering, 169, 165–171. https://doi.org/10.1016/j.jfoodeng.2015.08.011

He, S., Gu, C., Wang, D., Xu, W., Wang, R., Ma, Y. 2020. The stability and in vitro digestion of curcumin emulsions containing Konjac glucomannan. Lwt, 117(June 2019), 108672. https://doi.org/10.1016/j.lwt.2019.108672

Herranz, B., Borderias, A.J., Solas, M.T., Tovar, C.A. 2012. Influence of measurement temperature on the rheological and microstructural properties of glucomannan gels with different thermal histories. Food Research International, 48(2), 885–892. https://doi.org/10.1016/j.foodres.2012.07.005

Herranz, B., Borderias, A.J., Solo-de-Zaldívar, B., Solas, M.T., Tovar, C.A. 2012. Thermostability analyses of glucomannan gels. Concentration influence. Food Hydrocolloids, 29(1), 85–92. https://doi.org/10.1016/j.foodhyd.2012.02.011

Hu, Y., Liang, H., Xu, W., Wang, Y., An, Y., Yan, X., Ye, S., Huang, Q., Liu, J., Li, B. 2016. Synergistic effects of small amounts of konjac glucomannan on functional properties of egg white protein. Food Hydrocolloids, 52, 213–220. https://doi.org/10.1016/j.foodhyd.2015.07.001

Jiang, Y., Reddy, C.K., Huang, K., Chen, L., Xu, B. 2019. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. International Journal of Biological Macromolecules, 133, 1156–1163. https://doi.org/10.1016/j.ijbiomac.2019.04.187

Jimenez-Colmenero, F., Cofrades, S., Herrero, A.M., Solas, M.T., Ruiz-Capillas, C. 2013. Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage. Food Hydrocolloids, 30(1), 351–357. https://doi.org/10.1016/j.foodhyd.2012.06.015

Krasnow, M.N., Migoya, F. 2015. The Effect of Hardening Surfaces on Gloss , Surface Appearance , and Consumer Acceptance of Chocolates. April 2015, 37–41. https://doi.org/10.1080/15428052.2014.955159

Li, L., Liu, G. 2019. Corn oil-based oleogels with different gelation mechanisms as novel cocoa butter alternatives in dark chocolate. Journal of Food Engineering, 263(May), 114–122. https://doi.org/10.1016/j.jfoodeng.2019.06.001

Li, Z., Zhang, L., Mao, C., Song, Z., Li, X., Liu, C. 2021. Preparation and characterization of konjac glucomannan and gum arabic composite gel. International Journal of Biological Macromolecules, 183(June), 2121–2130. https://doi.org/10.1016/j.ijbiomac.2021.05.196

List, G.R. 2015. Soybean Lecithin: Food, Industrial Uses, and Other Applications. In Polar Lipids: Biology, Chemistry, and Technology (Issue 1913). AOCS Press. https://doi.org/10.1016/B978-1-63067-044-3.50005-4

Liu, Y.X., Cao, M.J., Liu, G.M. 2019. Texture analyzers for food quality evaluation. In Evaluation Technologies for Food Quality. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814217-2.00017-2

Miyasaki, E.K., Luccas, V., Kieckbusch, T.G. 2016. Modified soybean lecithins as inducers of the acceleration of cocoa butter crystallization. European Journal of Lipid Science and Technology, 118(10), 1539–1549. https://doi.org/10.1002/ejlt.201500093

Nizori, A., Tanjung, O.Y., Ulyarti, U., Arzita, A., Lavlinesia, L., Ichwan, B. 2021. Pengaruh Lama Fermentasi Biji Kakao (Theobroma Cacao L.) Terhadap Sifat Fisik, Kimia Dan Organoleptik Bubuk Kakao. Jurnal Pangan Dan Agroindustri, 9(2), 129–138. https://doi.org/10.21776/ub.jpa.2021.009.02.7

Ostrowska-Ligęza, E., Marzec, A., Górska, A., Wirkowska-Wojdyła, M., Bryś, J., Rejch, A., Czarkowska, K. 2019. A comparative study of thermal and textural properties of milk, white and dark chocolates. Thermochimica Acta, 671(October 2018), 60–69. https://doi.org/10.1016/j.tca.2018.11.005

Petyaev, I.M., Bashmakov, Y.K. 2017. Dark Chocolate: Opportunity for an Alliance between Medical Science and the Food Industry? Frontiers in Nutrition, 4(September). https://doi.org/10.3389/fnut.2017.00043

Prosapio, V., Norton, I.T. 2019. Development of fat-reduced chocolate by using water-in-cocoa butter emulsions. Journal of Food Engineering, 261(March), 165–170. https://doi.org/10.1016/j.jfoodeng.2019.06.018

Ramlah, S., Yumas, M. 2017. Pengaruh Formulasi Dan Asal Biji Kakao Fermentasi Terhadap Mutu Dan Citarasa Dark Chocolate. (Effect of Formulation and Fermented Cocoa Beans Origin to Dark chocolate’s Quality and Flavour). Jurnal Industri Hasil Perkebunan, 12(1), 58–75. https://doi.org/10.33104/jihp.v12i1.2806

Rigolle, A., Gheysen, L., Depypere, F., Landuyt, A., Van Den Abeele, K., Foubert, I. 2015. Lecithin influences cocoa butter crystallization depending on concentration and matrix. European Journal of Lipid Science and Technology, 117(11), 1722–1732. https://doi.org/10.1002/ejlt.201400555

Saputro, A.D., Muhammad, D.R.A., Sunarharum, W.B., Kusumadevi, Z., Irmandharu, F. 2021. Physical characteristics of chocolate made from cocoa bean fermented at different duration: A preliminary study. IOP Conference Series: Earth and Environmental Science, 653(1). https://doi.org/10.1088/1755-1315/653/1/012039

Schomaker, M., Schräer, C., Lörcher, M. 2020. Measurement and Control of the Gloss of Chocolate. Chemical Engineering and Technology, 43(11), 2336–2343. https://doi.org/10.1002/ceat.202000003

Skelhon, T.S., Grossiord, N., Morgan, A.R., Bon, S.A.F. 2012. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary. Journal of Materials Chemistry, 22(36), 19289–19295. https://doi.org/10.1039/c2jm34233b

Skelhon, T.S., Olsson, P.K.A., Morgan, A.R., Bon, S.A.F. 2013. High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content. Food and Function, 4(9), 1314–1321. https://doi.org/10.1039/c3fo60122f

Sorapukdee, S., Jansa, S., Tangwatcharin, P. 2020. Quality and stability of reduced-fat fermented pork sausage ( Sai Krok E-san ) with konjac gel during chilled storage. 16(1), 143–154.

Stortz, T.A., Laredo, T., Marangoni, A.G. 2015. The Role of Lecithin and Solvent Addition in Ethylcellulose-Stabilized Heat Resistant Chocolate. Food Biophysics, 10(3), 253–263. https://doi.org/10.1007/s11483-014-9379-7

Sun, P., Xia, B., Ni, Z.J., Wang, Y., Elam, E., Thakur, K., Ma, Y.L., Wei, Z.J. 2021. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chemistry, 360(April), 130017. https://doi.org/10.1016/j.foodchem.2021.130017

Supriati, Y. 2016. Keanekaragaman Iles-Iles (Amorphophallus Spp.) Dan Potensinya Untuk Industri Pangan Fungsional, Kosmetik, Dan Bioetanol. Jurnal Penelitian Dan Pengembangan Pertanian, 35(2), 69. https://doi.org/10.21082/jp3.v35n2.2016.p69-80

Suri, T., Basu, S. 2021. Heat resistant chocolate development for subtropical and tropical climates: a review. Critical Reviews in Food Science and Nutrition, 0(0), 1–20. https://doi.org/10.1080/10408398.2021.1888690

Syafiq, A., Amir, I.Z., Sharon, W.X.R. 2014. Mixture experiment on rheological properties of dark chocolate as influenced by cocoa butter substitution with xanthan gum/corn starch/ glycerin blends. International Food Research Journal, 21(5), 1887–1892.

Talbot, G. 2012. Chocolate and Cocoa Butter-Structure and Composition. Cocoa Butter and Related Compounds, 1–33. https://doi.org/10.1016/B978-0-9830791-2-5.50004-9

Widjanarko, S.B., Widyastuti, E., Rozaq, F.I. 2015. The Effect of Porang (Amorphophallus muelleri Blume) Milling Time Using Ball Mill (Cyclone Separator) Method Toward Physical and Chemical Properties of Porang Flour. Jurnal Pangan Dan Agroindustri, 3(3), 867–877.

Yang, J.S., Kim, J., Hahn, J., Choi, Y.J. 2021. Development of flaxseed gum / konjac glucomannan with agar as gelling agents with enhanced elastic properties. April, 1–19. https://doi.org/10.20944/preprints202104.0189.v1

Yanuriati, A., Marseno, D.W., Rochmadi, Harmayani, E. 2017. Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume). Carbohydrate Polymers, 156, 56–63. https://doi.org/10.1016/j.carbpol.2016.08.080

Zhang, H., Zhang, F., Yuan, R. 2020. Applications of natural polymer-based hydrogels in the food industry. In Hydrogels Based on Natural Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816421-1.00015-X

Zhou, Y., Cao, H., Hou, M., Nirasawa, S., Tatsumi, E., Foster, T.J., Cheng, Y. 2013. Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat fl our. FRIN, 51(2), 879–885. https://doi.org/10.1016/j.foodres.2013.02.002

Zhu, F. 2018. Modifications of konjac glucomannan for diverse applications. Food Chemistry, 256(September 2017), 419–426. https://doi.org/10.1016/j.foodchem.2018.02.151.

DOI

https://doi.org/10.21107/agrointek.v18i1.17036

Metrics

Refbacks





Copyright (c) 2024 Panji achmad apriyandi, Aji Sutrisno

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.