Pengaruh penggantian lemak kakao oleh glukomanan porang dan lesitin terhadap sifat fisik cokelat hitam (Dark chocolate)
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Aidoo, R.P., Afoakwa, E.O., Dewettinck, K. 2014. Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture - Rheological, microstructure and physical quality characteristics. Journal of Food Engineering, 126, 35–42. https://doi.org/10.1016/j.jfoodeng.2013.10.036
Akesowan, A. 2019. Optimization of sugar-free konjac gel texture containing erythritol-sucralose sweetener for producing healthy jam *Akesowan,. Food Research, 3(June), 241–248.
Amir, Sharon, Syafiq, W.X.R., Amir, I.Z., Sharon, W.X.R., Syafiq, A. 2013. D-optimal mixture design on melting and textural properties of dark chocolate as affected by cocoa butter substitution with xanthan gum/guar gum blends. International Food Research Journal, 20(4), 1991–1995.
Asmawit. 2012. Penelitian substitusi lemak kakao dengan lemak kelapa sawit dalam pembuatan coklat batang. Biopropal Industri, 3(1), 17–21.
Buda, U., Priyadarshini, M.B., Majumdar, R. K., Mahanand, S.S., Patel, A.B., Mehta, N.K. 2021. Quality characteristics of fortified silver carp surimi with soluble dietary fiber: Effect of apple pectin and konjac glucomannan. International Journal of Biological Macromolecules, 175, 123–130. https://doi.org/10.1016/j.ijbiomac.2021.01.191
Caparosa, M.H., Hartel, R.W. 2020. Characterizing Lecithin Interactions in Chocolate Using Interfacial Properties and Rheology. JAOCS, Journal of the American Oil Chemists’ Society. https://doi.org/10.1002/aocs.12419
da Silva, D.F., Barbosa de Souza Ferreira, S., Bruschi, M.L., Britten, M., Matumoto-Pintro, P.T. 2016. Effect of commercial konjac glucomannan and konjac flours on textural, rheological and microstructural properties of low fat processed cheese. Food Hydrocolloids, 60, 308–316. https://doi.org/10.1016/j.foodhyd.2016.03.034
Dickinson, E. 2018. Hydrocolloids acting as emulsifying agents – How do they do it? Food Hydrocolloids, 78, 2–14. https://doi.org/10.1016/j.foodhyd.2017.01.025
Francis, F.P., Chidambaram, R. 2019. Hybrid hydrogel dispersed low fat and heat resistant chocolate. Journal of Food Engineering, 256(September 2018), 9–17. https://doi.org/10.1016/j.jfoodeng.2019.03.012
Garti, N., Aserin, A. 2012. Effect of Emulsifiers on Cocoa Butter and Chocolate Rheology, Polymorphism, and Bloom. In Cocoa Butter and Related Compounds. AOCS Press. https://doi.org/10.1016/B978-0-9830791-2-5.50015-3
Glicerina, V., Balestra, F., Dalla Rosa, M., Romani, S. 2016. Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. Journal of Food Engineering, 169, 165–171. https://doi.org/10.1016/j.jfoodeng.2015.08.011
He, S., Gu, C., Wang, D., Xu, W., Wang, R., Ma, Y. 2020. The stability and in vitro digestion of curcumin emulsions containing Konjac glucomannan. Lwt, 117(June 2019), 108672. https://doi.org/10.1016/j.lwt.2019.108672
Herranz, B., Borderias, A.J., Solas, M.T., Tovar, C.A. 2012. Influence of measurement temperature on the rheological and microstructural properties of glucomannan gels with different thermal histories. Food Research International, 48(2), 885–892. https://doi.org/10.1016/j.foodres.2012.07.005
Herranz, B., Borderias, A.J., Solo-de-Zaldívar, B., Solas, M.T., Tovar, C.A. 2012. Thermostability analyses of glucomannan gels. Concentration influence. Food Hydrocolloids, 29(1), 85–92. https://doi.org/10.1016/j.foodhyd.2012.02.011
Hu, Y., Liang, H., Xu, W., Wang, Y., An, Y., Yan, X., Ye, S., Huang, Q., Liu, J., Li, B. 2016. Synergistic effects of small amounts of konjac glucomannan on functional properties of egg white protein. Food Hydrocolloids, 52, 213–220. https://doi.org/10.1016/j.foodhyd.2015.07.001
Jiang, Y., Reddy, C.K., Huang, K., Chen, L., Xu, B. 2019. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. International Journal of Biological Macromolecules, 133, 1156–1163. https://doi.org/10.1016/j.ijbiomac.2019.04.187
Jimenez-Colmenero, F., Cofrades, S., Herrero, A.M., Solas, M.T., Ruiz-Capillas, C. 2013. Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage. Food Hydrocolloids, 30(1), 351–357. https://doi.org/10.1016/j.foodhyd.2012.06.015
Krasnow, M.N., Migoya, F. 2015. The Effect of Hardening Surfaces on Gloss , Surface Appearance , and Consumer Acceptance of Chocolates. April 2015, 37–41. https://doi.org/10.1080/15428052.2014.955159
Li, L., Liu, G. 2019. Corn oil-based oleogels with different gelation mechanisms as novel cocoa butter alternatives in dark chocolate. Journal of Food Engineering, 263(May), 114–122. https://doi.org/10.1016/j.jfoodeng.2019.06.001
Li, Z., Zhang, L., Mao, C., Song, Z., Li, X., Liu, C. 2021. Preparation and characterization of konjac glucomannan and gum arabic composite gel. International Journal of Biological Macromolecules, 183(June), 2121–2130. https://doi.org/10.1016/j.ijbiomac.2021.05.196
List, G.R. 2015. Soybean Lecithin: Food, Industrial Uses, and Other Applications. In Polar Lipids: Biology, Chemistry, and Technology (Issue 1913). AOCS Press. https://doi.org/10.1016/B978-1-63067-044-3.50005-4
Liu, Y.X., Cao, M.J., Liu, G.M. 2019. Texture analyzers for food quality evaluation. In Evaluation Technologies for Food Quality. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814217-2.00017-2
Miyasaki, E.K., Luccas, V., Kieckbusch, T.G. 2016. Modified soybean lecithins as inducers of the acceleration of cocoa butter crystallization. European Journal of Lipid Science and Technology, 118(10), 1539–1549. https://doi.org/10.1002/ejlt.201500093
Nizori, A., Tanjung, O.Y., Ulyarti, U., Arzita, A., Lavlinesia, L., Ichwan, B. 2021. Pengaruh Lama Fermentasi Biji Kakao (Theobroma Cacao L.) Terhadap Sifat Fisik, Kimia Dan Organoleptik Bubuk Kakao. Jurnal Pangan Dan Agroindustri, 9(2), 129–138. https://doi.org/10.21776/ub.jpa.2021.009.02.7
Ostrowska-Ligęza, E., Marzec, A., Górska, A., Wirkowska-Wojdyła, M., Bryś, J., Rejch, A., Czarkowska, K. 2019. A comparative study of thermal and textural properties of milk, white and dark chocolates. Thermochimica Acta, 671(October 2018), 60–69. https://doi.org/10.1016/j.tca.2018.11.005
Petyaev, I.M., Bashmakov, Y.K. 2017. Dark Chocolate: Opportunity for an Alliance between Medical Science and the Food Industry? Frontiers in Nutrition, 4(September). https://doi.org/10.3389/fnut.2017.00043
Prosapio, V., Norton, I.T. 2019. Development of fat-reduced chocolate by using water-in-cocoa butter emulsions. Journal of Food Engineering, 261(March), 165–170. https://doi.org/10.1016/j.jfoodeng.2019.06.018
Ramlah, S., Yumas, M. 2017. Pengaruh Formulasi Dan Asal Biji Kakao Fermentasi Terhadap Mutu Dan Citarasa Dark Chocolate. (Effect of Formulation and Fermented Cocoa Beans Origin to Dark chocolate’s Quality and Flavour). Jurnal Industri Hasil Perkebunan, 12(1), 58–75. https://doi.org/10.33104/jihp.v12i1.2806
Rigolle, A., Gheysen, L., Depypere, F., Landuyt, A., Van Den Abeele, K., Foubert, I. 2015. Lecithin influences cocoa butter crystallization depending on concentration and matrix. European Journal of Lipid Science and Technology, 117(11), 1722–1732. https://doi.org/10.1002/ejlt.201400555
Saputro, A.D., Muhammad, D.R.A., Sunarharum, W.B., Kusumadevi, Z., Irmandharu, F. 2021. Physical characteristics of chocolate made from cocoa bean fermented at different duration: A preliminary study. IOP Conference Series: Earth and Environmental Science, 653(1). https://doi.org/10.1088/1755-1315/653/1/012039
Schomaker, M., Schräer, C., Lörcher, M. 2020. Measurement and Control of the Gloss of Chocolate. Chemical Engineering and Technology, 43(11), 2336–2343. https://doi.org/10.1002/ceat.202000003
Skelhon, T.S., Grossiord, N., Morgan, A.R., Bon, S.A.F. 2012. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary. Journal of Materials Chemistry, 22(36), 19289–19295. https://doi.org/10.1039/c2jm34233b
Skelhon, T.S., Olsson, P.K.A., Morgan, A.R., Bon, S.A.F. 2013. High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content. Food and Function, 4(9), 1314–1321. https://doi.org/10.1039/c3fo60122f
Sorapukdee, S., Jansa, S., Tangwatcharin, P. 2020. Quality and stability of reduced-fat fermented pork sausage ( Sai Krok E-san ) with konjac gel during chilled storage. 16(1), 143–154.
Stortz, T.A., Laredo, T., Marangoni, A.G. 2015. The Role of Lecithin and Solvent Addition in Ethylcellulose-Stabilized Heat Resistant Chocolate. Food Biophysics, 10(3), 253–263. https://doi.org/10.1007/s11483-014-9379-7
Sun, P., Xia, B., Ni, Z.J., Wang, Y., Elam, E., Thakur, K., Ma, Y.L., Wei, Z.J. 2021. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chemistry, 360(April), 130017. https://doi.org/10.1016/j.foodchem.2021.130017
Supriati, Y. 2016. Keanekaragaman Iles-Iles (Amorphophallus Spp.) Dan Potensinya Untuk Industri Pangan Fungsional, Kosmetik, Dan Bioetanol. Jurnal Penelitian Dan Pengembangan Pertanian, 35(2), 69. https://doi.org/10.21082/jp3.v35n2.2016.p69-80
Suri, T., Basu, S. 2021. Heat resistant chocolate development for subtropical and tropical climates: a review. Critical Reviews in Food Science and Nutrition, 0(0), 1–20. https://doi.org/10.1080/10408398.2021.1888690
Syafiq, A., Amir, I.Z., Sharon, W.X.R. 2014. Mixture experiment on rheological properties of dark chocolate as influenced by cocoa butter substitution with xanthan gum/corn starch/ glycerin blends. International Food Research Journal, 21(5), 1887–1892.
Talbot, G. 2012. Chocolate and Cocoa Butter-Structure and Composition. Cocoa Butter and Related Compounds, 1–33. https://doi.org/10.1016/B978-0-9830791-2-5.50004-9
Widjanarko, S.B., Widyastuti, E., Rozaq, F.I. 2015. The Effect of Porang (Amorphophallus muelleri Blume) Milling Time Using Ball Mill (Cyclone Separator) Method Toward Physical and Chemical Properties of Porang Flour. Jurnal Pangan Dan Agroindustri, 3(3), 867–877.
Yang, J.S., Kim, J., Hahn, J., Choi, Y.J. 2021. Development of flaxseed gum / konjac glucomannan with agar as gelling agents with enhanced elastic properties. April, 1–19. https://doi.org/10.20944/preprints202104.0189.v1
Yanuriati, A., Marseno, D.W., Rochmadi, Harmayani, E. 2017. Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume). Carbohydrate Polymers, 156, 56–63. https://doi.org/10.1016/j.carbpol.2016.08.080
Zhang, H., Zhang, F., Yuan, R. 2020. Applications of natural polymer-based hydrogels in the food industry. In Hydrogels Based on Natural Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816421-1.00015-X
Zhou, Y., Cao, H., Hou, M., Nirasawa, S., Tatsumi, E., Foster, T.J., Cheng, Y. 2013. Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat fl our. FRIN, 51(2), 879–885. https://doi.org/10.1016/j.foodres.2013.02.002
Zhu, F. 2018. Modifications of konjac glucomannan for diverse applications. Food Chemistry, 256(September 2017), 419–426. https://doi.org/10.1016/j.foodchem.2018.02.151.
DOI
https://doi.org/10.21107/agrointek.v18i1.17036Metrics
Refbacks
Copyright (c) 2024 Panji achmad apriyandi, Aji Sutrisno
This work is licensed under a Creative Commons Attribution 4.0 International License.