Teknik Ekstraksi dan Nanoenkapsulasi Komponen Bioaktif Buah Malaka: Tinjauan Literatur

Nida El Husna, Erliza Noor, Farah Fahma, Titi Candra Sunarti

Abstract

The bioactive components of malacca (Emblica officinalis), which consist of phenolic, alkaloids, phytosterols, organic acids, and vitamins, are valuable for human health. The yield and quality of the bioactive components in the extract highly depend on the extraction technique, so it is essential to know the development of research on extraction techniques of the bioactive components of malacca fruit. In addition, the bioactive components in the extract have limitations in their application due to their stability, solubility, absorption, and bioavailability properties. Currently, nanoencapsulation technology has been applied to extracts of bioactive components to improve their properties. This review aims to provide comprehensive information about extraction techniques to obtain bioactive components of malacca fruit and presents the technique and purpose of the nanoencapsulation of malacca fruit extract. In addition to conventional techniques, several modern extraction techniques such as microwave-assisted extraction (MAE), ultrasound (UAE), pulsed electric field (PEF), and supercritical fluid (SFE) have been used to extract bioactive components of malacca fruit. Modern extraction techniques can produce extracts of bioactive components with higher yields than conventional techniques. The application of nanoencapsulation technology to malacca fruit extract consists of nanoliposomes and nanoparticles can increase permeability, antioxidant activity, antidiabetic and anti-inflammatory properties of malacca fruit extract.

Keywords

Malacca; amla; Emblica officinalis; bioactive components; extraction; nanoencapsulation

References

Al-Twaty, N.H., Booles, H.F., 2014. Nano-encapsulated form of Phyllanthus emblica extract increases its therapeutic effects as antidiabetic and antioxidant in Rats. Int. J. Pharm. Sci. Rev. Res. 29, 11–17.

Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M., 2013. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 117, 426–436. https://doi.org/10.1016/ j.jfoodeng.2013.01.014

Azwanida, N., 2015. A Review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 4, 3–8. https://doi.org/10.4172/2167-0412.1000196

Baliga, M.S., Dsouza, J.J., 2011. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur. J. Cancer Prev. 20, 225–239. https://doi.org/ 10.1097/CEJ.0b013e32834473f4

Bansal, V., Sharma, A., Ghanshyam, C., Singla, M.L., 2014. Optimization and characterization of pulsed electric field parameters for extraction of quercetin and ellagic acid in emblica officinalis juice. J. Food Meas. Charact. 8, 225–233. https://doi.org/ 10.1007/s11694-014-9189-0

Bhagat, M., 2016. Indian gooseberry (Emblica officinalis): pharmacognosy review, in: Gupta, V.K. (Ed.), Daya Publishing House.

Bhushani, J.A., Kumar, N., Anandharamakrishnan, C., 2017. Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. J. Food Eng. 199, 82–92. https://doi.org/ 10.1016/j.jfoodeng.2016.12.010

Bryant, G., Wolfe, J., 1987. Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. J. Membr. Biol. 96, 129–139. https://doi.org/10.1007/BF01869239

Cahyaningrum, P.L., Yuliari, S.A.M., Suta, I.B.P., 2019. Uji aktivitas antidiabetes dengan ekstrak buah amla (Phyllantus Emblica L) pada mencit BALB/C yang diinduksi aloksan. J. Vocat. Heal. Stud. 03, 53–58. https://doi.org/10.20473/jvhs. V3I2.2019.53–58

da Silva, B. V, Barreira, J.C.M., Oliveira, M.B.P.P., 2016. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci. Technol. 50, 144–158. https://doi.org/10.1016/j.tifs. 2015.12.007

Dasaroju, S., Gottumukkala, K.M., 2014. Review article current trends in the research of Emblica officinalis (amla): A pharmacological perspective. Int. J. Pharm. Sci. Rev. Res. 24, 150–159.

Dias, A.L.B., Arroio Sergio, C.S., Santos, P., Barbero, G.F., Rezende, C.A., Martínez, J., 2016. Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum). Ultrason. Sonochem. 31, 284–294. https://doi.org/10.1016/j.ultsonch.2016.01.013

Ezhilarasi, P.N., Karthik, P., Chhanwal, N., Anandharamakrishnan, C., 2013. Nanoencapsulation techniques for food bioactive components : A review. Food Bioprocess Technol. 6, 628–647. https://doi.org/10.1007/ s11947-012-0944-0

Fauzi, N.I., Febriani, Y., Musthofa, R.A., 2017. Uji aktivitas insulin-sensitizer ekstrak etanol buah malaka (Phyllanthus emblica L.) pada tikus jantan galur wistar yang diinduksi diet tinggi lemak. Indones. J. Pharm. Technol. 6, 22–28.

Gaire, B.P., Subedi, L., 2015. Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn. Chin. J. Integr. Med. 1–8. https://doi.org/10.1007/s11655-014-1984-2

Ghosal, S., Tripathi, V.K., Chauhan, S., 1996. Active constituents of Emblica officinalis. Part 1. The chemistry and antioxidative effects of two new hydrolysable tannins, emblicanin A (Ia) and B (Ib). Indian J. Chem. 35, 941–948. https://doi.org/10.1002/ chin.199647279

Habib-ur-Rehman, Yasin, K.A., Choudhary, M.A., Khaliq, N., Atta-ur-Rahman, Choudhary, M.I., Malik, S., 2007. Studies on the chemical constituents of Phyllanthus emblica. Nat. Prod. Res. 21, 775–781. https://doi.org/10.1080/14786410601124664

Hasan, R., Islam, N., Islam, R., 2016. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis : A review. Int. Curr. Pharm. J. 5, 14–21. https:// doi.org/10.3329/ICPJ.V5I2.26441

Heinz, V., Toepfl, S., Knorr, D., 2003. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innov. Food Sci. Emerg. Technol. 4, 167–175. https://doi.org/10.1016/S1466-8564(03)00017-1

Heleno, S.A., Diz, P., Prieto, M.A., Barros, L., Rodrigues, A., Barreiro, M.F., Ferreira, I.C.F.R., 2016. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem. 197, 1054–1063. https://doi. org/10.1016/j.foodchem.2015.11.108

Hu, Y., Zhang, W., Ke, Z., Li, Y., Zhou, Z., 2017. In vitro release and antioxidant activity of Satsuma mandarin (Citrus reticulata Blanco cv. unshiu) peel flavonoids encapsulated by pectin nanoparticles. Int. J. Food Sci. Technol. 52, 2362–2373. https://doi.org/10.1111/ijfs.13520

Ingkatawornwong, S., Sakdiset, P., Kaew-on, P., Nobnob, N., Pinsuwan, S., 2008. Antioxidant evaluation and liposome formulation of Phyllanthus emblica extract. Planta Med. 74, PC36. https://doi.org/10.1055/s-0028-1084554

Jacotet-Navarro, M., Rombaut, N., Deslis, S., Fabiano-Tixier, A.S., Pierre, F.X., Bily, A., Chemat, F., 2016. Towards a “dry” bio-refinery without solvents or added water using microwaves and ultrasound for total valorization of fruit and vegetable by-products. Green Chem. 18, 3106–3115. https://doi.org/10.1039/c5gc02542g

Jafari, S., 2017. Nanoencapsulation technologies for the food and nutraceutical industries, Elsevier- Academic Press. London.

Jain, R., Pandey, R., Mahant, R.N., Rathore, D.S., 2015. A Review on medicinal importance of Emblica Officinalis. Int. J. Pharm. Sci. Res. 6, 72–84. https://doi.org/10.13040/ IJPSR.0975-8232.6(1).72-84

Krishnan, R.Y., Rajan, K.S., 2017. Influence of microwave irradiation on kinetics and thermodynamics of extraction of flavonoids from Phyllanthus emblica. Brazilian J. Chem. Eng. 34, 885–899. https://doi.org/10.1590/0104-6632.20170343s20150628

Kumari, P., Khatkar, B.S., 2016. Assessment of total polyphenols, antioxidants and antimicrobial properties of aonla varieties. J. Food Sci. Technol. 53, 3093–3103. https:// doi.org/10.1007/s13197-016-2282-0

Li, Y., Guo, B., Wang, W., Li, L., Cao, L., Yang, C., Liu, J., Liang, Q., Chen, J., Wu, S., Zhang, L., 2019. Characterization of phenolic compounds from Phyllanthus emblica fruits using HPLC-ESI-TOF-MS as affected by an optimized microwave-assisted extraction. Int. J. Food Prop. 22, 330–342. https://doi.org/10.1080/ 10942912.2019.1583249

Liu, X., Cui, C., Zhao, M., Wang, J., Luo, W., Yang, B., Jiang, Y., 2008. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chem. 109, 909–915. https://doi.org/ 10.1016/j.foodchem.2008.01.071

Liu, X., Zhao, M., Luo, W., Yang, B., Jiang, Y., 2009. Identification of volatile components in Phyllanthus emblica L. and their antimicrobial activity. J. Med. Food 12, 423–428. https://doi.org/10.1089/jmf.2007.0679

Luo, W., Zhao, M., Yang, B., Shen, G., Rao, G., 2009. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chem. 114, 499–504. https://doi.org/ 10.1016/j.foodchem.2008.09.077

Majeed, M., Bhat, B., Jadhav, A.N., Srivastava, J.S., Nagabhushanam, K., 2009. Ascorbic acid and tannins from Emblica officinalis Gaertn. fruits - a revisit. J. Agric. Food Chem. 57, 220–225. https://doi.org/10.1021/ jf802900b

Milanda, T., Satria, A., Kusuma, W., Shanmuganathan, K., 2017. Antibacterial activity of malacca fruit (Phyllantus emblica L.) ethanolic extract and fraction against Bacillus cereus FNCC0057 and Shigela dysenteriae ATCC13313. Asian J. Pharm. Clin. Res. 8–10. https://doi.org/10.22159/ajpcr.2017.v10s2.19471

Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B., 2011. An overview of encapsulation technologies for food applications. Procedia Food Sci. 1, 1806–1815. https://doi.org/10.1016/j.profoo.2011.09.265

Okonogi, S., Japanya, K., Hongwiset, D., Yotsawimonwat, S., 2010. Fractionation of Phyllanthus emblica extract for encapsulated products, in: XVIII International Conference on Bioencapsulation. pp. 8–9.

Paredes, A.J., Asencio, C.M., Manuel, L.J., Allemandi, D.A., Palma, S.D., 2016. Nanoencapsulation in the food industry: manufacture, applications and characterization. J. Food Bioeng. Nanoprocessing 1, 56–79.

Pareek, S., Pratap, M., 2011. Aonla (Emblica officinalis Gaertn.), in: Yahia, E.M. (Ed.), © Woodhead Publishing Limited, UK.

Pathak, R.K., 2003. Status report on genetic resources of indian gooseberry-aonla (Emblica officinalis Gaertn.) in South and Southeast Asia. IPGRI-APO, India.

Pereira, M.C., Oliveira, D.A., Hill, L.E., Carlos, R., Borges, C.D., Vizzotto, M., Mertens-talcott, S., Talcott, S., Gomes, C.L., 2018. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem. 240, 396–404. https://doi.org/10.1016/j.foodchem.2017.07.144

Pramitaningastuti, A.S., Iwo, M.I., 2016. The effect of ethanolic extract and juice of malacca (Phyllanthus emblica L.) fruit in rat model stroke. Der Pharm. Lett. 8, 147–155.

Raknam, P., 2012. Skin evaluation of creams containing Phyllanthus emblica fruit extract liposomes. Prince of Songkla University, Songkla Thailand.

Reis, C.P., Neufeld, R.J., Ribeiro, A.J., Veiga, F., 2006. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine Nanotechnology, Biol. Med. 2, 8–21. https://doi.org/10.1016/ j.nano.2005.12.003

Renuka, R., Sandhya, P., Vedha Hari, B.N., Ramya Devi, D., 2013. Design of polymeric nanoparticles of emblica officinalis extracts and study of in vitro therapeutic effects. Curr. Trends Biotechnol. Pharm. 7, 716–724.

Roohinejad, S., Koubaa, M., Barba, F.J., Greiner, R., Orlien, V., Lebovka, N.I., 2016. Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends Food Sci. Technol. 52, 98–108. https://doi.org/10.1016/ j.tifs.2016.04.005

Rosa, P.T.., Meireles, M.A.., 2009. Cost of manufacturing of supercritical fluid extracts from condimentary plants. CRC Press Boca Raton, New York. https://doi.org/10.1201/9781420062397.ch4

Sawant, L., Prabhakar, B., Mahajan, A., Pai, N., Pandita, N., 2011. Development and validation of HPLC method for quantification of phytoconstituents in Phyllanthus emblica. J. Chem. Pharm. Res. 3, 937–944.

Scartezzini, P., Antognoni, F., Raggi, M.A., Poli, F., Sabbioni, C., 2006. Vitamin C content and antioxidant activity of the fruit and of the Ayurvedic preparation of Emblica officinalis Gaertn. J. Ethnopharmacol. 104, 113–118. https://doi.org/ 10.1016/j.jep.2005.08.065

Soquetta, M.B., Terra, L. de M., Bastos, C.P., 2018. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CYTA - J. Food 16, 400–412. https://doi.org/ 10.1080/19476337.2017.1411978

Suzery, M., Isnaning, C.A., Cahyono, B., 2013. Potensi ekstrak dan fraksi buah kemloko (Phyllanthus emblica L.) sebagai sumber antioksidan. Molekul 8, 167–177. https://doi.org/ 10.20884/1.jm.2013.8.2.138

Trusheva, B., Trunkova, D., Bankova, V., 2007. Different extraction methods of biologically active components from propolis; a preliminary study. Chem. Cent. J. 1, 1–4. https://doi.org/ 10.1186/1752-153X-1-13

Tsai, C., Chou, C., Liu, Y., Hsieh, C., 2014. Ultrasound-assisted extraction of phenolic compounds from Phyllanthus emblica L. and evaluation of antioxidant activities. Int. J. Cosmet. Sci. 36, 471–476. https://doi.org/10.1111/ics.12143

Uji, T., 2007. Review: Species diversity of indigenous fruits in Indonesia and its potential. Biodiversitas 8, 157–167. https://doi.org/10.13057/biodiv/d080217

Uribe, E., Delgadillo, A., Giovagnoli-Vicunã, C., Quispe-Fuentes, I., Zura-Bravo, L., 2015. Extraction techniques for bioactive compounds and antioxidant capacity determination of chilean papaya (Vasconcellea pubescens) fruit. J. Chem. 1, 1–8. https://doi.org/ 10.1155/2015/347532

Variya, B.C., Bakrania, A.K., Patel, S.S., 2016. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 111, 180–200. https://doi.org/10.1016/ j.phrs.2016.06.013

Wang, F., Pan, T., Yuan, R., Li, C., Li, K., 2015. Optimization of extraction process of flavonoids in Phyllanthus emblica L. by response surface methodology and content determination. Indian J. Tradit. Knowl. 14, 213–219.

Wang, T., Guo, N., Wang, S.X., Kou, P., Zhao, C.J., Fu, Y.J., 2018. Ultrasound-negative pressure cavitation extraction of phenolic compounds from blueberry leaves and evaluation of its DPPH radical scavenging activity. Food Bioprod. Process. 108, 69–80. https://doi.org/ 10.1016/j.fbp.2018.01.003

Yang, B., Kortesniemi, M., Liu, P., Karonen, M., Salminen, J.P., 2012. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry. J. Agric. Food Chem. 60, 8672–8683. https://doi.org/10.1021/jf302925v

Yang, B., Liu, P., 2014. Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica. J. Agric. Food Chem. 62, 529–541. https://doi.org/10.1021/jf404703k

Zhang, L., Hao, W., Guo, Y., Tu, G., Lin, S., Xin, L., 2003. Studies on chemical constituents in fruits of tibetan medicine Phyllanthus emblica. Zhongguo Zhongyao Zazhi 28, 940–943.

Zhang, Q.W., Lin, L.G., Ye, W.C., 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Med. (United Kingdom) 13, 1–26. https://doi.org/10.1186/s13020-018-0177-x

Zhang, Y., Tanaka, T., Yang, C., Kouno, I., 2001. New phenolic constituents from the fruit juice of Phyllanthus emblica. Chem. Pharm. Bull. (Tokyo). 49, 537–540. https://doi.org/10.1248/cpb.49.537

Zhang, Y., Zhao, L., Guo, X., 2014. Chemical constituents from Phyllanthus emblica and the cytoprotective effects on H2O2-induced PC12 cell injuries. Arch. Pharmacal Res. 39, 1202–1211. https://doi.org/10.1007/s12272-014-0433-2

Zorzi, G.K., Carvalho, E.L.S., von Poser, G.L., Teixeira, H.F., 2015. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev. Bras. Farmacogn. 25, 426–436. https:// doi.org/10.1016/j.bjp.2015.07.015

DOI

https://doi.org/10.21107/agrointek.v16i2.12433

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Nida El Husna, Erliza Noor, Farah Fahma, Titi Candra Sunarti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.