Biosintesis nanopartikel perak (AgNP) menggunakan Bacillus firmus E65 dan aktivitasnya terhadap mikroba patogen

Yadi Suryadi, Dwi Ningsih Susilowati, I Made - Samudra

Abstract

Silver (Ag) in ionic form is toxic to microbial cells, but is environmentally friendly and safe for humans. This study aims to synthesize silver nanoparticles (AgNP) using Gram-positive bacterial isolate (B. firmus E65) as a bioreductor and to test its activity as an antimicrobial against Eschericia coli, Xanthomonas oryzae pv. oryzae (Xoo) and the fungus Colletotrichum gloeosporioides under in-vitro assays. AgNP was obtained by adding bacterial culture supernatant B. firmus E-65 to 5mM AgNO3 solution. The formation of AgNP was observed by changing the color of the solution after incubation at 37 °C for 72 hours. The UV-Vis spectrophotometer measurement to AgNP solution showed a maximum wavelength of 425 nm. The particle size of AgNP was 252.1 nm with intensity of 98.90 %. The result of bioassay against E. coli showed the greatest inhibition at 50 % AgNP (degree of inhibition (DI) =96.15 %), followed by 25 % AgNP (DI=76.92 %), and 12.5 % AgNP (DI=53.84 %). The bioassay against Xoo showed the greatest degree of inhibition was at AgNP 50 % (DI=92.85 %), followed by 25 % AgNP  and 12.5 % AgNP (DI=85.71 %). Meanwhile bioassay against C.gloeosporioides, the greatest inhibition  was observed at 25 % AgNP (DI=94.35 %), followed by 50 % AgNP (DI=91.9 %).

Keywords

Silver nanoparticle; antimicrobes; B. firmus E 65

References

Ahmed, T., Shahid, M., Noman, M., Niazi, M. B. K., Mahmood, F., Manzoor, I., … Chen, J., 2020. Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens, 9, 1–17. https://doi.org/10.3390/pathogens9030160

Bonde, S., 2011. A biogenic approach for green synthesis of silver nanoparticles using extract of Foeniculum vulgare and its activity against Staphylococcus aureus and Escherichia coli. Nusantara Bioscience,3,59–63. https://doi.org/10.13057/nusbiosci/n030201

Carbone, M., Donia, D. T., Sabbatella, G., Antiochia, R., 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University - Science, 28, 273–279. https://doi.org/10.1016/j.jksus.2016.05.004

Chen, J., Li, S., Luo, J., Wang, R., Ding, W., 2016. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia solanacearum by Stabilization. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/7135852

Deljou, A., Goudarzi, S., 2016. Green extracellular synthesis of the silver nanoparticles using Thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian Journal of Biotechnology, 14, 25–32. https://doi.org/10.15171/ijb.1259

Dhuldhaj, U. P., Deshmukh, S. D., Gade, A. K., Yashpal, M., Rai, M. K., 2012. Tagetes erecta mediated phytosynthesis of silver nanoparticles: an eco-friendly approach. Nusantara Bioscience, 4, 109–112. https://doi.org/10.13057/nusbiosci/n040304

Ibrahim, E., Fouad, H., Zhang, M., Zhang, Y., Qiu, W., Yan, C., … Chen, J., 2019. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Advances, 9, 29293–29299. https://doi.org/10.1039/c9ra04246f

Ismail, O., Ocsoy, M. L. P. M. A., Kunwar, S., Chen, T., Mingxu, Y., Weihong, T., 2013. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial Against Xanthomonas Perforans. ACS Nano, 7. https://doi.org/10.1021/nn4034794.Nanotechnology

Jain D, Daima HK, Kachhwala S, Kothari SL., 2009. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest Journal of Nanomaterials and Biostructures, 4, 557–563.

Jeevan, P., Ramya, K., Rena, A. E., 2012. Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. Indian Journal of Biotechnology, 11, 72–76.

Kareem, S. O., Familola, O. T., Oloyede, A. R., Dare, E. O., 2019. Microbial synthesis of silver nanoparticles using alternaria alternata and their characterization. Applied Environmental Research, 41, 1–7. https://doi.org/10.35762/AER.2019.41.1.1

Kim, S., Kwak, J. S., Song, J. T., Seo, H. S., 2016. Long-term effect of niclosamide on inhibition of bacterial leaf blight in rice, JPPR 56. https://doi.org/10.1515/jppr-2016-0051

Le, A. T., Le, T. T., Nguyen, V. Q., Tran, H. H., Dang, D. A., Tran, Q. H., Vu, D. L., 2012. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3. https://doi.org/10.1088/2043-6262/3/4/045007

Lestari, T. P., Tahlib, F. A., Sukweenadhi, J., Kartini, K., Avanti, C., 2019. Physical Characteristic and Antibacterial Activity of Silver Nanoparticles from Green Synthesis Using Ethanol Extracts of Phaleria macrocarpa (Scheff.) Boerl Leaves. Majalah Obat Tradisional, 24, 22. https://doi.org/10.22146/mot.37956

Loo, Y. Y., Chieng, B. W., Nishibuchi, M., Radu, S., 2012. Synthesis of silver nanoparticles by using tea leaf extract from Camellia Sinensis. International Journal of Nanomedicine, 7, 4263–4267. https://doi.org/10.2147/IJN.S33344

Mahdizadeh, V., Safaie, N., Khelghatibana, F., 2015. Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. Journal of Crop Protection, 4, 291–300.

Masakke, Y., Sulfikar, Rasyid, M., 2015. Biosintesis Partikel-nano Perak Menggunakan Ekstrak Metanol Daun Manggis. Jurnal Sainsmat, IV, 28–41.

Mukhopadhyay, S. S., 2014. Nanotechnology in agriculture: Prospects and constraints. Nanotechnology, Science and Applications, 7, 63–71. https://doi.org/10.2147/NSA.S39409

Nameirakpam, N. D., Dheeban, S. P., S., S., 2012. Biomimetic Synthesis of Silver Nanoparticles From an Endophytic Fungus and Their Antimicrobial Efficacy. International Journal of Biomedical and Advance Research, 3, 409–415. https://doi.org/10.7439/ijbar.v3i5.365

Owaid, M. N., Naeem, G. A., Muslim, R. F., Oleiwi, R. S., 2020. Synthesis, characterization and antitumor efficacy of silver nanoparticle from Agaricus bisporus pileus, basidiomycota. Walailak Journal of Science and Technology, 17, 75–87. https://doi.org/10.48048/wjst.2020.5840

Pandit, R., 2015. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Bioscience, 7, 15–19. https://doi.org/10.13057/nusbiosci/n070103

Patil, B., Gb, J., Karegowda, C., Naik, S., 2017. Management of bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae under field condition, 6, 244–246.

Patil, D. R., 2015. Synthesis and Charactrisation of Silver Nanoparticles using Fungi and its Anti-Microbial Activity. International Journal of Research Studies in Biosciences, 3, 146–152.

Pulit, J., Banach, M., Szczygłowska, R., Bryk, M., 2013. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochimica Polonica, 60(4), 795–798.https://doi.org/10.18388/abp.2013_2060

Sholkamy, E. N., Ahamd, M. S., Yasser, M. M., Eslam, N., 2019. Anti-microbiological activities of bio-synthesized silver Nano-stars by Saccharopolyspora hirsuta. Saudi Journal of Biological Sciences, 26, 195-200.https://doi.org/10.1016/j.sjbs.2018.02.020

Sundaram, R. M., Chatterjee, S., Oliva, R., Laha, G. S., Cruz, C. V., 2014. Update on Bacterial Blight of Rice : Fourth International Conference on Bacterial Blight, (August), 1–3. https://doi.org/10.1186/s12284-014-0012-7

Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R., Gao, X., 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Nature Publishing Group, 1–9. https://doi.org/10.1038/srep12975

DOI

https://doi.org/10.21107/agrointek.v16i2.10785

Metrics

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 yadi - suryadi, Dwi Ningsih susilowati, I Made - Samudra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.