Dry matter and nitrogen accumulation of sweet corn (Zea mays var. saccharatta L.) under salt stress
Abstract
Sweet corn is popular among consumers due to its sweet taste, with ‘Bonanza’ being a variety widely cultivated by farmers in Madura. This research aimed to determine the dry matter and nitrogen accumulation in 'Bonanza' sweet corn under salt stress conditions. 'Bonanza' corn seedlings were grown in polybags containing a 1:1 mixture of soil and sand in a completely randomized design, with salt treatments of 0, 100, and 200 mM NaCl applied every two weeks. Each treatment was replicated eight times. Observed parameters included total plant weight, weight distribution of plant parts (roots, stems, leaves, tassels, ears, and seeds), percentage weight of plant parts, shoot/root ratio, and total nitrogen content in roots, stems, leaves, and seeds. Data were analyzed using one-way ANOVA followed by LSD post-hoc testing in SPSS 24. Results indicated that salt stress generally reduced total plant weight and the weights of individual plant parts. However, salt stress increased dry matter accumulation in leaves and stems, 2.5 and 8% respectively at a 100 mM increase in salt content, while decreasing it 11% in ear and 7.5% in seeds. Additionally, salt stress increased total nitrogen content in root, stems and leaves (average 2.6%) under but decreased in seeds (0.19%).
Keywords
Full Text:
PDFReferences
Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R., Malik, Z., & Parveen, Z. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculture, 103(2), 229-238.
Alhossini M. N., Rahmani, A., & Khorasani, S. K. (2014). Investigating Seed Germination Indices and Absorption Rate of Sodium, Chloride, Calcium, and Potassium in Different Parts of Seedlings of Sweet Corn KSC 403 (Zea Mays L var. Saccharata) Under Salinity Stress and Seed Priming. Journal of crop ecophysiology, 7(327), 357-372.
Amzeri, A. (2015). Hubungan Kekerabatan Jagung dan Perakitan Varietas Berdasarkan Karakter Morfologis, Kariotipe dan Molekular. Doctoral thesis,Fakultas Biologi Universitas Gadjah Mada, Yogyakarta.
Amzeri, A., Suhartono, S., Santoso, B. S., Khoiri, S., & Umam, A. S. (2024). Character assessment of hybrid maize candidates tolerant to drought stress. In BIO Web of Conferences (Vol. 146, p. 01094). EDP Sciences.
https://doi.org/10.1051/bioconf/202414601094
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
Ashrafi, E., Razmjoo, J., & Zahedi, M. (2018). Effect of salt stress on growth and ion accumulation of alfalfa (Medicago sativa L.) cultivars. Journal of Plant Nutrition, 41(7), 818-831. https://doi.org/10.1080/01904167.2018.1426017
Aslam, M. T., Imran, K. H. A. N., Chattha, M. U., Maqbool, R., Ziaulhaq, M., Lihong, W., ... & Arshad, M. (2023). The critical role of nitrogen in plants facing the salinity stress: Review and future prospective. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13347-13347. https://doi.org/10.15835/nbha51313347
Azevedo Neto, A. D. D., Prisco, J. T., Enéas-Filho, J., Lacerda, C. F. D., Silva, J. V., Costa, P. H. A. D., & Gomes-Filho, E. (2004). Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology, 16, 31-38. https://doi.org/10.1590/S1677-04202004000100005
Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253. https://doi.org/10.3390/plants12122253
Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. Abiotic stress in plants-mechanisms and adaptations, 1, 21-38.
Chakraborty, K., Basak, N., Bhaduri, D., Ray, S., Vijayan, J., Chattopadhyay, K., & Sarkar, R. K. (2018). Ionic basis of salt tolerance in plants: nutrient homeostasis and oxidative stress tolerance. Plant nutrients and abiotic stress tolerance, 325-362. https://doi.org/10.1007/978-981-10-9044-8_14
da Silva Martins, T., Da-Silva, C. J., Shimoia, E. P., Posso, D. A., Carvalho, I. R., de Oliveira, A. C. B., & do Amarante, L. (2023). Nitrate supply decreases fermentation and alleviates oxidative and ionic stress in nitrogen-fixing soybean exposed to saline waterlogging. Functional Plant Biology, 50(5), 416-433. https://doi.org/10.1071/FP22145
Dachlan, A., Kasim, N., & Sari, A. K. (2013). Uji ketahanan salinitas beberapa varietas jagung (Zea mays L.) dengan menggunakan agen seleksi NaCl. Biogenesis: Jurnal Ilmiah Biologi, 1(1), 9-17. https://journal3.uin-alauddin.ac.id/index.php/biogenesis/article/view/442
Demiral, M. A. (2017). Effect of salt stress on concentration of nitrogen and phosphorus in root and leaf of strawberry plant. Eurasian Journal of Soil Science, 6(4), 357-364. https://doi.org/10.18393/ejss.319198
Dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2(1), 113-135. https://doi.org/10.3390/stresses2010009
Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461-481. https://doi.org/10.1007/s13593-015-0287-0
Filippou, P., Bouchagier, P., Skotti, E., & Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 97, 1-10. https://doi.org/10.1016/j.envexpbot.2013.09.010
Geshlagi, S. A., Aliasgharzad, N., & Tavassoli, A. (2015). Evaluation of nutrients uptake and yield of mycorrhizal corn under salt stress condition. Water and Soil Science, 25(1), 79-89.
Hoque, M. M. I., Jun, Z., & Guoying, W. (2015). Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. Journal of BioScience & Biotechnology, 4(1), 39-49.
Jia, Y., Qin, D., Zheng, Y., & Wang, Y. (2023). Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. International Journal of Molecular Sciences, 24(19), 14406. https://doi.org/10.3390/ijms241914406
Khayatnezhad, M., & Gholamin, R. (2011). Effects of salt stress levels on five maize (Zea mays L.) cultivars at germination stage. African Journal of Biotechnology, 10(60), 12909-12915. https://doi.org/10.5897/AJB11.1568
Mondal, M. M. A., Puteh, A. B., Malek, M. A., & Rafii, M. Y. (2013). Salinity induced morpho-physiological characters and yield attributes in rice genotypes. Journal of Food, Agriculture and Environment, 11(2), 610-614.
Muhammad, I., Shalmani, A., Ali, M., Yang, Q. H., Ahmad, H., & Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in plant science, 11, 615942. https://doi.org/10.3389/fpls.2020.615942
Nazir, F., Mahajan, M., Khatoon, S., Albaqami, M., Ashfaque, F., Chhillar, H., ... & Khan, M. I. R. (2023). Sustaining nitrogen dynamics: A critical aspect for improving salt tolerance in plants. Frontiers in Plant Science, 14, 1087946. https://doi.org/10.3389/fpls.2023.1087946
Nurdin, M. Y., Usnawiyah, U., Erliza, S., Fridayanti, N., & Lukman, L. (2023). Karakter Fisiologi, Hasil dan Kualitas Beberapa Varietas Tanaman Jagung Manis (Zea mays saccharata Sturt L.) Akibat Perlakuan Salinitas. Jurnal Ilmiah Mahasiswa Agroekoteknologi, 2(2), 41-44. https://doi.org/10.29103/jimatek.v2i2.12559
Pavuluri, S. (2014). Kinetic approach for modeling salt precipitation in porous-media. GRIN Verlag.
Sholihah, N. F., & Saputro, T. B. (2016). Respon Tanaman Jagung (Zea mays L.) Verietas Manding terhadap Cekaman Salinitas (NaCl) secara In Vitro. Jurnal Sains dan Seni ITS, 5(2). https://doi.org/10.12962/j23373520.v5i2.20678
Shtereva, L. A., Vassilevska-Ivanova, R. D., & Karceva, T. V. (2015). Effect of salt stress on some sweet corn (Zea mays L. var. saccharata) genotypes. Archives of Biological Sciences, 67(3), 993-1000. https://doi.org/10.2298/ABS150121062S
Sukma, K. P. W., & Aini, Q. (2023, September). Skrining Jagung (Zea mays L.) Toleran Salinitas Berdasarkan Karakter Pada Fase Awal Pertumbuhan. In Agropross: National Conference Proceedings of Agriculture (pp. 366-371). https://doi.org/10.25047/agropross.2023.492
Sukma, K. P., & Awidiyantini, R. (2024). Dry matter and nitrogen accumulation of sweet corn (Zea mays var. saccharatta L.) under salt stress. Agrovigor: Jurnal Agroekoteknologi, 17(2).
Sukma, K. P., Daryono, B. S., Suprapti, I., & Purnomo, P. (2018, November). Salinity Resistance of Seven Varieties of Madura Corns on Early Stage of Growth. In 4th International Conference on Food, Agriculture and Natural Resources (FANRes 2018) (pp. 180-183). Atlantis Press.
Surtinah, S., & Lidar, S. (2017). Pertumbuhan Vegetatif dan Kadar Gula Biji Jagung Manis (Zea mays saccharata, Sturt) di Pekanbaru. Jurnal Ilmiah Pertanian, 13(2), 73-78. https://doi.org/10.31849/jip.v13i2.947
Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African Journal of Agricultural Research, 5(7), 584-588. https://doi.org/10.5897/AJAR09.677
Yousuf, P. Y., & Frukh, A. (2022). Salt Stress and Nitrogen Metabolism in Plants. In Advances in Plant Nitrogen Metabolism (pp. 194-202). CRC Press.
Zaman, M., Shahid, S. A., & Heng, L. (2018). Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (p. 164). Springer Nature.
Zhang, C., Lu, X., Yan, H., Gong, M., Wang, W., Chen, B., ... & Li, S. (2023). Nitrogen application improves salt tolerance of grape seedlings via regulating hormone metabolism. Physiologia Plantarum, 175(2), e13896. https://doi.org/10.1111/ppl.13896
Zhang, D., Zhang, Z., & Wang, Y. (2024). Effects of Salt Stress on Salt-Repellent and Salt-Secreting Characteristics of Two Apple Rootstocks. Plants, 13(7), 1046. https://doi.org/10.3390/plants13071046
DOI: https://doi.org/10.21107/agrovigor.v17i2.22550
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Kelik P W Sukma, Ruly Awidiyantini
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.