Effect of phosphate-solubilizing bacteria on growth and yield of Arachis hypogaea L. in varied soil types

Suhartono Suhartono, Edy Suryono, Yusriah Yusriah, Syaiful Khoiri


Peanut (Arachis hypogaea L.) is widely cultivated both in monoculture and polyculture (usually with corn) on dry land in Madura. Generally, the soil types of Madura are grumusol, regosol, and mediterranean. These three types of soil each have different physical and chemical properties. The effect of the addition of phosphate-solubilizing bacteria on the three soil types is unknown. The study aimed to determine the response of peanut plant growth due to the addition of phosphate solubilizing bacteria, Pseudomonas fluorescens, in three different soil types. The research was conducted in the experimental garden of Agroecotechnology, Faculty of Agriculture, Universitas Trunojoyo Madura. The research design used a non-factorial completely randomized design (CRD) with six treatments and four replications. The treatment consisted of three types of soil, namely regosol, grumosol, and mediteran as well as with and without the addition of P. fluorescens. The results showed that the treatment had a significant effect on the parameters of plant height, number of leaves, number of pods, pod dry weight, seed weight, above-ground biomass, root dry weight, and plant P content. The treatment did not show a significant effect on the root-canopy ratio and P. fluorescens population parameters.


growth; Madura island; peanut; production; Pseudomonas fluorescens

Full Text:



Bukhari, B., Safridar, N., & Fadli, R. (2020). Pengaruh pengapuran dan pemupukan fosfor pada tanah yang sering tergenang terhadap pertumbuhan dan hasil kacang tanah (Arachis hypogaea L.). Jurnal Agroristek, 3(2), 95–105.

Callan, N. W., Mathre, D. E., & Miller, J. B. (1991). Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. HortScience, 26(9), 1163–1165.

Carbajal-Morón, N. A., Manzano, M. G., & Mata-González, R. (2017). Soil hydrology and vegetation as impacted by goat grazing in Vertisols and Regosols in semi-arid shrublands of northern Mexico. The Rangeland Journal, 39(4), 363–373.

Gérard, F. (2016). Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma, 262, 213–226.

Heidari, A., Osat, M., & Konyushkova, M. (2022). Geochemical indices as efficient tools for assessing the soil weathering status in relation to soil taxonomic classes. Catena, 208, 105716.

Ji, W., Lu, Y., Yang, M., Wang, J., Zhang, X., Zhao, C., Xia, B., Wu, Y., & Ying, R. (2023). Geochemical characteristics of typical karst soil profiles in Anhui province, Southeastern China. Agronomy, 13(4), 1067.

Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. (2019). Influence of clay minerals on some soil fertility attributes: a review. Open Journal of Soil Science, 9(9), 155–188.

Lestari, W., Linda, T. M., & Martina, A. (2011). Kemampuan bakteri pelarut fosfat isolat asal Sei Garo dalam penyediaan fosfat terlarut dan serapannya pada tanaman kedelai. Biospecies, 4(2).

Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. Plant Nutrients and Abiotic Stress Tolerance, 171–190.

Ng, C. W. W., Yan, W. H., Tsim, K. W. K., San So, P., Xia, Y. T., & To, C. T. (2022). Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon, 8(11).

Nkaa, Fa., Nwokeocha, O. W., & Ihuoma, O. (2014). Effect of phosphorus fertilizer on growth and yield of cowpea (Vigna unguiculata). IOSR Journal of Pharmacy and Biological Sciences, 9(5), 74–82.

Rao, N. S. S. (1994). Mikroorganisme tanah dan pertumbuhan tanaman. Edisi Kedua. Penerbit Universitas Indonesia.

Riantara, H. P., & Mandala, M. (2020). Soil chemical properties of suboptimal dryland in subdistricts of Panji, Kendit, and Kapongan Situbondo Regency for development of cassava (Manihot utilissima L.) cultivation. Journal of Tropical Industrial Agriculture and Rural Development, 1(1), 1–7.

Sadzli, M. A., & Supriyadi, S. (2019). Pengaruh Biochar Sekam Padi dan Kompos Paitan (Tithonia diversifolia) terhadap Pertumbuhan Tanaman Kacang Hijau (Vigna radiata L.) di Tanah Mediteran. Agrovigor: Jurnal Agroekoteknologi, 12(2), 102–108.

Sahi, M. K., Haran, M. S., & Hanoon, M. B. (2022). Effect of inoculation with Bacillus spp., A. chroococcum, P. fluorescens and phosphorous levels on the amount of major nutrients in maize (Zea mays L.) irrigated with saline water. Caspian Journal of Environmental Sciences, 20(3), 533–537.

Shanmugaiah, V., Balasubramanian, N., Gomathinayagam, S., Manoharan, P. T., & Rajendran, A. (2009). Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants. African Journal of Agricultural Research, 4(11), 1220–1225.

Silitonga, D. M., Priyani, N., & Nurwahyuni, I. (2013). Isolasi dan uji potensi isolat bakteri pelarut fosfat dan bakteri penghasil hormon IAA (indole acetic acid) terhadap pertumbuhan kedelai (Glycine max L.) pada tanah kuning. Jurnal USU, 1(2), 35–41.

Smyth, E. M., McCarthy, J., Nevin, R., Khan, M. R., Dow, J. M., O’gara, F., & Doohan, F. M. (2011). In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. Journal of Applied Microbiology, 111(3), 683–692.

Suhartono, R.A. Sidqi Zaed, & A. Khoiruddin. (2008). Pengaruh Interval Pemberian Air Terhadap Pertumbuhan Dan Hasil Tanaman Kedelai (Glicine Max (L) Merril) Pada Berbagai Jenis Tanah. Embryo.

Sutoto, S. B. (2008). Kajian Pemberian Pupuk Fosfat Dan Saat Pembenaman Azolla Terhadap Pertumbuhan Dan Hasil Tanam an Padi Sawah. Jurnal Pertanian Mapeta, 10(3).

Uchida, R. (2000). Essential nutrients for plant growth: nutrient functions and deficiency symptoms. Plant Nutrient Management in Hawaii’s Soils, 4, 31–55.

Van Elsas, J. D., Dijkstra, A. F., Govaert, J. M., & Van Veen, J. A. (1986). Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiology Ecology, 2(3), 151–160.

Widiasmadi, N. (2020). Improvement Of Infiltration Rate With Microbial Activity To Electrolit Conductivity Soil In Gromosol Land With Biosoildam Technology For Tectona Grandis Plantation. PalArch’s Journal of Archaeology of Egypt/Egyptology, 17(6), 8364–8373.

DOI: https://doi.org/10.21107/agrovigor.v16i2.20763


  • There are currently no refbacks.

Copyright (c) 2023 Suhartono Suhartono, Edy Suryono, Yusriah Yusriah, Syaiful Khoiri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.