PERBANDINGAN K-MEANS DAN K-MEDOIDS UNTUK PENGELOMPOKKAN DATA TITIK PANAS BUMI DI PULAU KALIMANTAN
Abstract
This dtudy aims to determine the comparison of the performance of two methods, namely K-Means and K-Medoids. The performance of both is based on Sum Square Error (SSE) value. Both methods were used to group geothermal hotspot data on the island of Kalimantan. The geothermal point dataset used was obtained from the official NASA website. The parameters used are latitude, longitude, bright_ti4, scan, track, bright_ti5 and frp. In this study, it was carried out with variation in the value of k = 2, 3, 4, ...,12. Then the Elbow method was used to determine the optimal cluster of both methods. Based on the results, K-means provides greater group variation and better SSE values than the K-Medoids method on the optimal number of clusters. However, overall the results showed that K-Medoids had a better average SSE value than K-Means.
Keywords: Clustering, K-Means, K-Medoids, Geothermal Hotspot
Full Text:
PDF (Bahasa Indonesia)References
A. Sepriando and R. Heru Jatmiko, “Deteksi Kebakaran Hutan dan Lahan Menggunakan Citra Satelit Himawari-8 di Kalimantan Tengah,” 2019. [Online]. Available: https://worldview.earthdata.nasa.gov
F. S. Pratiwi, “Data Luas Karhutla di Indonesia hingga Oktober 2023,” Data Indonesia.id. Accessed: Apr. 16, 2024. [Online]. Available: https://dataindonesia.id/varia/detail/data-luas-karhutla-di-indonesia-hingga-oktober-2023.
B. Parsaulian, “Analisis Kebijakan Dalam Upaya Penegakan Hukum Lingkungan Hidup Di Indonesia,” Jurnal Reformasi Administrasi, vol. 56, no. 1, pp. 56–62, 2020, [Online]. Available: http://ojs.stiami.ac.id
S. T. Maulia, “Analisis Dampak Polusi Udara Akibat Kebakaran Hutan Dan Lahan Serta Upaya Pengurangannya Dalam Mempertahankan Ketahanan Energi,” Jurnal Ketahanan Nasional, vol. 29, no. 3, Jan. 2024, doi: 10.22146/jkn.92761.
N. Bilqis, “Analisis Dampak Kasus Kebakaran Hutan di Indonesia Terhadap Hubungan Diplomatik Indonesia dengan Malaysia dan Singapura,” 2020. [Online]. Available: https://www.liputan6.com/global/read/3121144/masa-depan-hubungan-ri-singapura-
F. W. Ardita and F. X. S. Sadewo, “Konstruksi Sosial Masyarakat Desa Pajengdalam Menjamin Kesehatan Pernafasan Akibat Kebakaran Hutan,” Jurnal Sains, Sosial dan Humaniora, vol. 2, no. 1, pp. 119–122, 2022, Accessed: Nov. 04, 2024. [Online]. Available: https://www.jurnal.ummu.ac.id/index.php/jssh/article/view/915/831
D. Handayani et al., “Pengaruh Inhalasi NO 2 terhadap Kesehatan Paru,” Cermin Dunia Kedokteran, vol. 138, pp. 17–22, 2003.
F. U. Najicha, I. Gusti, A. Ketut, and R. Handayani, “Analysis of Law Enforcement and Control Effort About Forest fire in West Kalimantan Province,” 2021, doi: 10.33172/jmb.v7i1.692.
R. R. Muhima, M. Kurniawan, S. R. Wardhana, and A. Yudhana, “An improved clustering based on K-means for hotspots data,” International Journal of Electrical Engineering and Computer Science, vol. 31, no. 2, pp. 1109–1117, 2023, doi: 10.11591/ijeecs.v31.i2.pp1109-1117.
K. Pratama Simanjuntak and U. Khaira, “Pengelompokkan Titik Api di Provinsi Jambi dengan Algoritma Agglomerative Hierarchical Clustering,” vol. 1, pp. 7–16, 2021.
R. R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, and Sunardi, “GA polygamy clustering on active fire data in Kalimantan Province,” AIP, Jun. 2023, p. 020003. doi: 10.1063/5.0140522.
P. Mimboro, K. Kusrini, and A. D. Laksito, “Spatial Hotspot Data and Weather for Forest Fire Data Clustering,” in ICOIACT 2022 - 5th International Conference on Information and Communications Technology: A New Way to Make AI Useful for Everyone in the New Normal Era, Proceeding, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 160–165. doi: 10.1109/ICOIACT55506.2022.9971884.
H. Syahputra, “Clustering Tingkat Penjualan Menu (Food and Beverage) Menggunakan Algoritma K-Means,” Jurnal KomtekInfo, pp. 29–33, Mar. 2022, doi: 10.35134/komtekinfo.v9i1.274.
R. R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, and Sunardi, Kupas Tuntas Algoritma Clustering Konsep, Perhitungan Manual dan Program, I. Penerbit Andi, 2022.
Haris Kurniawan, Sarjon Defit, and Sumijan, “Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal,” Journal of Applied Computer Science and Technology, vol. 1, no. 2, pp. 80–89, Dec. 2020, doi: 10.52158/jacost.v1i2.102.
S. Dewi, S. Defit, and Y. Yuhandri, “Akurasi Pemetaan Kelompok Belajar Siswa Menuju Prestasi Menggunakan Metode K-Means,” Jurnal Sistim Informasi dan Teknologi, pp. 28–33, Mar. 2021, doi: 10.37034/jsisfotek.v3i1.40.
D. F. Pasaribu, I. S. Damanik, E. Irawan, Suhada, and H. S. Tambunan, “Memanfaatkan Algoritma K-Means Dalam Memetakan Potensi Hasil Produksi Kelapa Sawit PTPN IV Marihat,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 11–20, Mar. 2021, doi: 10.37148/bios.v2i1.17.
D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 293–301, Nov. 2023, doi: 10.57152/malcom.v3i2.952.
M. A. Sembiring et al., “Penerapan Metode Algoritma K-Means Clustering untuk Pemetaan Penyebaran Penyakit Demam Berdarah Dengue (DBD),” 2021. [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR
S. S. Yu, S. W. Chu, C. M. Wang, Y. K. Chan, and T. C. Chang, “Two improved k-means algorithms,” Applied Soft Computing Journal, vol. 68, pp. 747–755, Jul. 2018, doi: 10.1016/j.asoc.2017.08.032.
H.-S. Park and C.-H. Jun, “A simple and fast algorithm for K-medoids clustering,” Expert Syst Appl, vol. 36, no. 2, pp. 3336–3341, Mar. 2009, doi: 10.1016/j.eswa.2008.01.039.
P. Jain, S. C. P. Coogan, S. G. Subramanian, M. Crowley, S. Taylor, and M. D. Flannigan, “A review of machine learning applications in wildfire science and management,” 2020, Canadian Science Publishing. doi: 10.1139/er-2020-0019.
A. Harmain, H. Kurniawan, and D. Maulina, “Normalisasi Data Untuk Efisiensi K-Means Pada Pengelompokan Wila-yah Berpotensi Kebakaran Hutan Dan Lahan Berdasarkan Sebaran Titik Panas,” Teknimedia, vol. 2, no. 2, pp. 83–89, 2021.
A. Ghosal, A. Nandy, A. K. Das, S. Goswami, and M. Panday, “A Short Review on Different Clustering Techniques and Their Applications,” 2020, pp. 69–83. doi: 10.1007/978-981-13-7403-6_9.
N. A. Khairani and E. Sutoyo, “Application of K-Means Clustering Algorithm for Determination of Fire-Prone Areas Utilizing Hotspots in West Kalimantan Province,” International Journal of Advances in Data and Information Systems, vol. 1, no. 1, pp. 9–16, Apr. 2020, doi: 10.25008/ijadis.v1i1.13.
A. Saxena et al., “A review of clustering techniques and developments,” Neurocomputing, vol. 267, pp. 664–681, Dec. 2017, doi: 10.1016/j.neucom.2017.06.053.
H. Pohan, M. Zarlis, E. Irawan, H. Okprana, and Y. Pranayama, “Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia,” JUKI : Jurnal Komputer dan Informatika, vol. 3, no. 2, pp. 97–104, Nov. 2021, doi: 10.53842/juki.v3i2.69.
I. F. Tarigan, D. Hartama, and S. Saragih, “Penerapan Data Mining Pada Prediksi Kelayakan Pemohon Kredit Mobil Dengan K-Medoids Clustering,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 1, no. 4, pp. 170–179, 2021, [Online]. Available: https://djournals.com/klik
M. Herviany, S. Putri Delima, T. Nurhidayah, and K. Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor Pada Provinsi Jawa Barat,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 34–40, Mar. 2021, doi: 10.57152/malcom.v1i1.60.
E. Herman, K. E. Zsido, and V. Fenyves, “Cluster Analysis with K-Mean versus K-Medoid in Financial Performance Evaluation,” Applied Sciences (Switzerland), vol. 12, no. 16, Aug. 2022, doi: 10.3390/app12167985.
A. Entezami, H. Sarmadi, and B. Saeedi Razavi, “An innovative hybrid strategy for structural health monitoring by modal flexibility and clustering methods,” J Civ Struct Health Monit, vol. 10, no. 5, pp. 845–859, Nov. 2020, doi: 10.1007/s13349-020-00421-4.
R. Wahyusari, S. Tinggi, and T. Ronggolawe, “Penerapan Algoritma K-Medoids Untuk Mengelompokkan Status Obesitas,” 2024.
R. R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, and Sunardi, “n-Mating Effect on Genetic Algorithm-Based Clustering Performance for Hotspots Data,” Proceeding - IEEE International Conference on Communication, Networks and Satellite, COMNETSAT 2022, pp. 212–215, 2022, doi: 10.1109/COMNETSAT56033.2022.9994400.
DOI: https://doi.org/10.21107/simantec.v13i1.17138
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rani Rotul Muhima, Hilmi Maulana Ilmi, Muchamad Kurniawan
Indexed By