KLASIFIKASI DAUN HERBAL MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER DAN KNEAREST NEIGHBOR
Abstract
ABSTRAK
Perkembangan ilmu tanaman telah mengalami kemajuan yang pesat, khususnya ilmu mengenai tanaman herbal. Tanaman herbal memiliki banyak manfaat bagi kehidupan manusia yaitu sebagai penyedian oksigen, bahan makanan, obat-obatan, maupun bahan kosmetika. Untuk mengetahui jenis-jenis tanaman herbal dapat dilakukan dengan proses klasifikasi. Klasifikasi tanaman herbal dapat dilakukan dengan cara mengidentifikasi bentuk citra daun dari tanaman tersebut. Proses klasifikasi tanaman herbal memerlukan ekstraksi fitur dari bentuk dari tanaman tersebut. Pada penelitian ini, fitur invariant moment dan fitur geometri digunakan untuk ekstraksi fitur daun herbal. Fitur yang digunakan berjumlah 10 fitur. Ada beberapa macam metode klasifikasi yang biasa digunakan. Pada penelitian ini metode klasifikasi yang digunakan adalah metode Naïve Bayes Classifier dan K-Nearest Neighbor (KNN). Metode Naïve Bayes Classifier merupakan metode Bayesian Learning yang paling cepat dan sederhana. Sedangkan metode KNN dapat melakukan klasifikasi dengan cepat berdasarkan jarak terdekat diantara objek data. Berdasarkan hasil uji coba yang dilakukan, penggunaan metode Naïve Bayes Classifier didapatkan nilai akurasi sebesar 75%, sedangkan dengan menggunakan metode K-Nearest Neighbor didapatkan nilai akurasi sebesar 70,83%. Hal ini menunjukkan bahwa kinerja metode Naïve Bayes Classifier lebih baik dibandingkan metode KNN.
Kata Kunci: Fitur Invariant Moment, Fitur Geometri, Naïve Bayes Classifier, K-Nearest Neighbor, Bayesian Learning.
ABSTRACT
Science of the plant has made progress, particularly knowledge about herbs. Herb has many benefits for human life as provision of oxygen, foodstuffs, pharmaceuticals, and cosmetics. To determine the types of herbs with the classification process. Classification of herbs conducted by identifying the shape of the image of the leaves of these plants. Herbal plant classification process requires the extraction of features from the shape of plant. In this study, moment invariant features and geometrical feature is used for feature extraction of herbal leaves.Features used amounted to 10 features. There are several kinds of commonly used classification method. In this study, the classification method used is the method Naïve Bayes classifier and K-Nearest Neighbor (KNN). Naïve Bayes classifier is Bayesian Learning method of the most rapid and simple. While the KNN method can perform fast classification is based on the shortest distance between data objects. Based on the results of tests conducted, the use of methods Naïve Bayes Classifier accuracy values obtained by 75%, while using K-Nearest Neighbor value obtained an accuracy of 70.83%.These results indicate that the performance of Naïve Bayes Classifier method is better than KNN method.
Keywords: Invariant Moment Feature, Geometrical Feature, Naïve Bayes Classifier, K-Nearest Neighbor, Bayesian Learning
Full Text:
PDF (Bahasa Indonesia)References
Z. Husin, A.Y.M. Shakaff, A. H. A. Aziz, R.S.M. Farook, M.N. Jaafar, U. Hashim, and A. Harun, “Embedded Portable Device For Herb Leaves Recognition Using Image Processing Techniques And Neural Network Algorithm”, Science Direct on Computers and Electronics in Agriculture, pp. 18–29, 2012.
K. Abdul, E.N Lukito, and N. Adhi, “Leaf Classification Using Shape, Color, and Texture Features”, International Journal of Computer Trends and Technology, July to Aug, 2011.
L.N. Pradany, A.Y. Wijaya, and R. Soelaiman, “Identifikasi Parameter Optimal Jaringan Syaraf Tiruan Multi Layer Perceptron pada Pengenalan Pola Daun: Studi Kasus Tanaman Herbal”, Jurnal Teknik Pomits, vol. 2, no. 1, 2014.
Cope, and S. James, “Plant species identification using digital morphometrics: A review”, Expert Systems with Applications, vol. 39, no.8, pp. 7562-7573, 2012.
Y.A. Sari, R.K. Dewi, and C. Fatichah,“Seleksi Fitur Menggunakan Ekstraksi Fitur Bentuk, Warna, Dan Tekstur Dalam Sistem Temu Kembali Citra Daun”, Juti, vol. 12, no. 1, pp. 1-8, 2014.
N. Valiammal, and Geethalaksmi, “An Optimal Feature Subset Selection for Leaf Analysis”,International Journal of Computer and Communication Engineering, vol. 6, 2012.
J . Chaki, and R. Parekh, “Plant Leaf Recognition using Shape based Features and Neural Network Classifiers”, International Journal of Advanced Computer Science and Applications, vol. 2, no. 10, 2011.
S. G. Wu, F. S. Bao, E. Y. Xu, Y. -X. Wang, Y. –F. Chang, and Q. –L. Xiang, “A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network”, IEEE International Symposium, pp. 1-6, July, 2007.
T. Gembong, Morfologi Tanaman, Gadjah Mada University, Yogyakarta, 2005.
B. Xiao, J. -T. Cui, H. -X. Qin, W.–S. Li, and G. –Y. Wang, “Moments and Moment Invariants in the Radon Space”, Elsevier Pattern Recognition, vol. 8, no. 9, pp. 2772-2784, 2015.
DOI: https://doi.org/10.21107/simantec.v5i1.1009
Refbacks
- There are currently no refbacks.
Copyright (c) 1970 Febri Liantoni, Hendro Nugroho
Indexed By