MRI image enhancement of the brain using U-NET

Pangestu Sandya Etniko Siagian, Eva Yulia Puspaningrum, Wan Suryani Wan Awang, I Gede Susrama Mas Diyasa

Abstract


The quality of Magnetic Resonance Imaging (MRI) images is often compromised by various types of noise, such as salt, pepper, salt-and-pepper, and speckle noise, caused by technical or environmental disturbances. This study aims to develop a brain MRI image denoising model based on the U-Net architecture, capable of effectively removing different types of noise. The methodology includes collecting normal brain MRI datasets, applying data augmentation to increase variability, and introducing artificial noise to simulate possible noise conditions. The U-Net model is trained and evaluated using the Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) metrics. The novelty of this study lies in its combination of augmentation techniques, multi-intensity artificial noise variations, and its exclusive focus on normal brain MRI images. The results demonstrate that the U-Net model achieves optimal performance on salt-and-pepper noise at an intensity of 0.1, marked by the highest PSNR value of 37.2047 dB and the lowest MSE value of 0.000207. Conversely, the model shows the lowest performance on high-intensity speckle noise, indicating greater challenges in addressing multiplicative noise. This study contributes a systematic and empirically tested approach to improving the quality of brain MRI images with high efficiency, supporting the development of image-based diagnostic systems in the medical field.

Keywords: Deep Learning, Denoising, Image Enhancement, Noise, U-Net.

Full Text:

PDF

References


B. Nouri, M. Arab, and M. Nasiri, “Endometriosis: Clinical, Magnetic Resonance Imaging and Pathologic Findings,” J. Obstet. Gynecol. Cancer Res., vol. 8, no. 5, pp. 481–487, Sep. 2023, doi: 10.30699/jogcr.8.5.481. https://doi.org/10.30699/jogcr.8.5.481

D. Tamada, “Review: Noise and artifact reduction for MRI using deep learning,” Feb. 2020, [Online]. Available: http://arxiv.org/abs/2002.12889 https://doi.org/10.48550/arXiv.2002.12889

A. Makhlouf, M. Maayah, N. Abughanam, and C. Catal, “The use of generative adversarial networks in medical image augmentation,” Neural Comput. Appl., vol. 35, no. 34, pp. 24055–24068, Dec. 2023, doi: 10.1007/s00521-023-09100-z. https://doi.org/10.1007/s00521-023-09100-z

N. Mamatov, K. Erejepov, M. Jalelova, I. Narzullayev, and A. Samijonov, “X-ray Image Contrast Enhancement Approach,” in 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), IEEE, Jun. 2024, pp. 1293–1297. doi: 10.1109/ICAAIC60222.2024.10575386. https://doi.org/10.1109/ICAAIC60222.2024.10575386

A. Z. - and H. N. -, “A Study on Image Noise Removal Techniques for Magnetic Resonance Imaging,” Int. J. Multidiscip. Res., vol. 6, no. 1, Feb. 2024, doi: 10.36948/ijfmr.2024.v06i01.13298. https://doi.org/10.36948/ijfmr.2024.v06i01.13298

A. Thomas, D. K. K R, D. Babu, and A. P.E, “Denoising Autoencoder for the Removal of Noise in Brain MR Images,” in 2023 International Conference on Control, Communication and Computing (ICCC), IEEE, May 2023, pp. 1–5. doi: 10.1109/ICCC57789.2023.10165274. https://doi.org/10.1109/ICCC57789.2023.10165274

M. Tripathi, “Facial image denoising using Autoencoder and UNET,” Herit. Sustain. Dev., vol. 3, no. 2, pp. 89–96, 2021, doi: 10.37868/hsd.v3i2.71. https://doi.org/10.37868/hsd.v3i2.71

S.-H. Kang and Y. Lee, “Motion Artifact Reduction Using U-Net Model with Three-Dimensional Simulation-Based Datasets for Brain Magnetic Resonance Images,” Bioengineering, vol. 11, no. 3, p. 227, Feb. 2024, doi: 10.3390/bioengineering11030227. https://doi.org/10.3390/bioengineering11030227

Y. Gi et al., “Study of multistep Dense U‐Net‐based automatic segmentation for head MRI scans,” Med. Phys., vol. 51, no. 3, pp. 2230–2238, Mar. 2024, doi: 10.1002/mp.16824. https://doi.org/10.1002/mp.16824

R. Touati, W. Trung Le, and S. Kadoury, “Multi-planar dual adversarial network based on dynamic 3D features for MRI-CT head and neck image synthesis,” Phys. Med. Biol., vol. 69, no. 15, p. 155012, Aug. 2024, doi: 10.1088/1361-6560/ad611a. https://doi.org/10.1088/1361-6560/ad611a

K.-J. Tsai, C.-C. Chang, L.-C. Lo, J. Y. Chiang, C.-S. Chang, and Y.-J. Huang, “Automatic segmentation of paravertebral muscles in abdominal CT scan by U-Net,” Medicine (Baltimore)., vol. 100, no. 44, p. e27649, Nov. 2021, doi: 10.1097/MD.0000000000027649. https://doi.org/10.1097/MD.0000000000027649

M. Nishio, S. Noguchi, and K. Fujimoto, “Automatic Pancreas Segmentation Using Coarse-Scaled 2D Model of Deep Learning: Usefulness of Data Augmentation and Deep U-Net,” Appl. Sci., vol. 10, no. 10, p. 3360, May 2020, doi: 10.3390/app10103360. https://doi.org/10.3390/app10103360

O. Rainio and R. Klén, “Comparison of simple augmentation transformations for a convolutional neural network classifying medical images,” Signal, Image Video Process., vol. 18, no. 4, pp. 3353–3360, 2024, doi: 10.1007/s11760-024-02998-5. https://doi.org/10.1007/s11760-024-02998-5

D. Azcona, K. McGuinness, and A. F. Smeaton, “A Comparative Study of Existing and New Deep Learning Methods for Detecting Knee Injuries using the MRNet Dataset,” in 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA), IEEE, Oct. 2020, pp. 149–155. doi: 10.1109/IDSTA50958.2020.9264030. https://doi.org/10.1109/IDSTA50958.2020.9264030

W. Wu, M. Chen, Y. Xiang, Y. Zhang, and Y. Yang, “Recent progress in image denoising: A training strategy perspective,” IET Image Process., vol. 17, no. 6, pp. 1627–1657, May 2023, doi: 10.1049/ipr2.12748. https://doi.org/10.1049/ipr2.12748

S. S. Hidayat, D. Rahmawati, M. C. A. Prabowo, L. Triyono, and F. T. Putri, “Determining the Rice Seeds Quality Using Convolutional Neural Network,” JOIV Int. J. Informatics Vis., vol. 7, no. 2, p. 527, Jun. 2023, doi: 10.30630/joiv.7.2.1175. https://doi.org/10.30630/joiv.7.2.1175

T. Ashwin B. and B. Amma N. G., “Comparative Analysis of Machine learning Techniques for Classifying the Risk of Cardiovascular Diseases,” 2024, pp. 161–186. doi: 10.4018/979-8-3693-0683-3.ch009. https://doi.org/10.4018/979-8-3693-0683-3.ch009

K. Ali, A. N. Qureshi, M. Shahid Bhatti, A. Sohail, M. Hijji, and A. Saeed, “De-Noising Brain MRI Images by Mixing Concatenation and Residual Learning (MCR),” Comput. Syst. Sci. Eng., vol. 45, no. 2, pp. 1167–1186, 2023, doi: 10.32604/csse.2023.032508. https://doi.org/10.32604/csse.2023.032508

X. Wang, Y. Hua, E. Kodirov, D. A. Clifton, and N. M. Robertson, “IMAE for Noise-Robust Learning: Mean Absolute Error Does Not Treat Examples Equally and Gradient Magnitude’s Variance Matters,” pp. 1–19, 2019, [Online]. Available:http://arxiv.org/abs/1903.12141-https://doi.org/10.48550/arXiv.1903.12141

J. Gurrola-Ramos, O. Dalmau, and T. E. Alarcon, “A Residual Dense U-Net Neural Network for Image Denoising,” IEEE Access, vol. 9, pp. 31742–31754, 2021, doi: 10.1109/ACCESS.2021.3061062. https://doi.org/10.1109/ACCESS.2021.3061062

S. A. Naji and N. Majeed Saleh, “Digital Image Forgery Detection And Localization Using The Innovated U-Net,” Iraqi J. Comput. Informatics, vol. 50, no. 1, pp. 195–207, Jun. 2024, doi: 10.25195/ijci.v50i1.484. https://doi.org/10.25195/ijci.v50i1.484

X. Li, H. Chen, D. Zheng, and X. Xu, “CED-Net: A more effective DenseNet model with channel enhancement,” Math. Biosci. Eng., vol. 19, no. 12, pp. 12232–12246, 2022, doi: 10.3934/mbe.2022569. https://doi.org/10.3934/mbe.2022569

Y. Cui, X. Hong, H. Yang, Z. Ge, and J. Jiang, “AsymUNet: An Efficient Multi-Layer Perceptron Model Based on Asymmetric U-Net for Medical Image Noise Removal,” Electronics, vol. 13, no. 16, p. 3191, Aug. 2024, doi: 10.3390/electronics13163191. https://doi.org/10.3390/electronics13163191

W. El-Shafai et al., “Efficient deep-learning-based Autoencoder denoising approach for medical image diagnosis,” Comput. Mater. Contin., vol. 70, no. 3, pp. 6107–6125, 2022, doi: 10.32604/cmc.2022.020698. https://doi.org/10.32604/cmc.2022.020698

L. Kong et al., “A Generalized Deep Learning Method for Synthetic CT Generation,” Int. J. Radiat. Oncol., vol. 117, no. 2, p. e472, Oct. 2023, doi: 10.1016/j.ijrobp.2023.06.1681. https://doi.org/10.1016/j.ijrobp.2023.06.1681

Y. FAROOQ and S. SAVAŞ, “Noise Removal from the Image Using Convolutional Neural Networks-Based Denoising Auto Encoder,” J. Emerg. Comput. Technol., vol. 3, no. 1, pp. 21–28, 2024, doi: 10.57020/ject.1390428. https://doi.org/10.57020/ject.1390428

Patrisius Batarius, Alfry Aristo Sinlae, and Elisabeth F. Fahik, “Analysis of the Quality of Natural Dyes in Weaving Exposed to Sunlight Using MSE and PSNR Parameters,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 5, pp. 797–802, Oct. 2022, doi: 10.29207/resti.v6i5.4339. https://doi.org/10.29207/resti.v6i5.4339

Y. Y. Al-Aboosi, R. S. Issa, and A. Khalid Jassim, “Image denosing in underwater acoustic noise using discrete wavelet transform with different noise level estimation,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 3, pp. 1439–1446, 2020, doi: 10.12928/TELKOMNIKA.V18I3.14381. https://doi.org/10.12928/telkomnika.v18i3.14381




DOI: https://doi.org/10.21107/simantec.v13i2.29775

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 I Gede Susrama Mas Diyasa

batmantoto

coktogel

kakaktogel

slot gacor

toto togel

situs togel

laetoto

laetoto

slot gacor

QQ188

slot gacor

Presidenslot

bonus new member

slot

batmantoto

slot gacor

slot gacor

slot gacor

slot olympus

slot demo

slot deposit 1000

slot gacor

slot88

rokokbet

slot88

slot gacor

rokokbet

slot resmi

rokokbet

https://sandiegohills.org/

Situs Toto

Situs Toto

Dana4d

Situs Toto

Pan4D

Toto 4d

slot777

https://lppm.stba-jia.ac.id/

slot88

https://ppki.stba-jia.ac.id/

https://pmb.iainkudus.id/

https://jim.iainkudus.id/

slot777

Situs Toto

Slot777

SITUS TOTO

PAN4D

PAN4D

Slot88

Toto 4d

situs toto

slot88

https://iboninternational.org/about-us

https://jurnalkommas.com/docs/Jurnal

https://www.wulaguda.com.au/gallery

slot thailand

bonus new member

togelin

situs toto

hokijp168

paris88

slot gacor

vegas123

situs slot

miya4d

slot gacor

mahjong ways 2

DPRBET

dollar4d

levis4d

buku mimpi

laetoto

Slot Gacor

slot pulsa

slot777

slot gacor gampang menang

Indexed By

slot

slot777

slot gacor maxwin

slot777

slot gacor

slot gacor

slot777

merahtoto

merahtoto

slot777

hijautoto

kuningtoto

game slot

kuningtoto slot

kuningtoto

link kuningtoto

birutoto

birutoto

slot gacor

ungutoto

link ungutoto

slot gacor

ungutoto

togel online 4d

tototogel

bandar togel

game online

slot gacor

situs gacor

merahtoto

kuningtoto

kuningtoto

merahtoto

hijautoto

hijautoto

hijautoto

hijautoto

birutoto

slot88

merahtoto

merahtoto

merona4d

merona4d

merona4d

merona4d

merona4d

merona4d

merona4d

merona4d

slot gacor maxwin

birutoto

birutoto

hijautoto

kuningtoto

slot777

slot88

scatter hitam

rokokbet

rokokbet

rokokbet

paito hk

raja togel

toto macau

https://global-jws.com/ojs/

situs toto

slot gacor

merahtoto

merona4d

Slot Gacor

merona4d

hijautoto

slot gacor

merahtoto

merona4d

merona4d

birutoto

situs togel

birutoto

slot88

merahtoto

merona4d

kuningtoto

hijautoto

birutoto

kuningtoto

slot gacor hari ini

merahtoto

merahtoto

birutoto

birutoto

ungutoto

ungutoto

ungutoto

ungutoto

violetslot

violetslot

hijautoto

kuningtoto

kuningtoto

kuningtoto

kuningtoto

birutoto

birutoto

birutoto

birutoto

birutoto

merona4d

ungutoto

ungutoto

ungutoto

ungutoto

ungutoto

ungutoto

merahtoto

kuningtoto

birutoto

birutoto

situs toto

birutoto

merahtoto

Violetslot

ungutoto

ungutoto

kuningtoto

birutoto

merahtoto

birutoto

slot gacor hari ini

birutoto

merahtoto

birutoto

ungutoto

ungutoto

violetslot

violetslot

</div…

violetslot

ungutoto

ungutoto

ungutoto

kuningtoto

birutoto

birutoto

birutoto

birutoto

merahtoto

slot gacor hari ini

merahtoto

merona4d

merahtoto

merahtoto

merahtoto

merahtoto

merona4d

kuningtoto

kuningtoto

birutoto