PREDIKSI NILAI DENGAN METODE SPECTRAL CLUSTERING DAN CLUSTERWISE REGRESSION
Abstract
ABSTRAK
Prediksi nilai adalah hal yang terus dikembangkan dalam penggalian data. Regresi linier merupakan metode dasar dalam memprediksi nilai berdasar variabel-variabel pada data. Salah satu hal yang mempengaruhi kualitas dari hasil regresi adalah persebaran data latih. Data latih terkadang membuat persamaan regresi kurang optimal. Hal ini dapat diantisipasi dengan mengelompokkan data terlebih dahulu kemudian membangun model regresi dari masing-masing kelompok. Pengelompokan data dilakukan dengan menggunakan algoritma Spectral Clustering, sedangkan model regresi dibangun dengan algoritma Clusterwise Regression. Hasil prediksi merupakan hasil perkalian keanggotaan fuzzy data uji dengan persamaan regresi pada masing-masing kelompok. Metode ini diujicobakan terhadap beberapa dataset yang bervariasi yang dibandingkan dengan metode regresi linear biasa. Ukuran pengujian yang digunakan adalah Root Mean Square Error yang menghitung kesalahan dari hasil prediksi. Semakin kecil nilai RMSE suatu metode maka metode tersebut semakin baik. Berdasar pada uji coba yang dilakukan, penggunaan metode yang diusulkan mampu memprediksi nilai dengan kesalahan sekitar 3 sampai 6 persen. Parameter jumlah cluster juga berpengaruh terhadap hasil prediksi yaitu berbanding terbalik dengan nilai RMSE.
Kata kunci: Clusterwise Regression, Pengelompokan, Penggalian Data, Prediksi, Regresi, Spectral Clustering.
ABSTRACT
Predicted values are continuously being developed in data mining. Linear regression is a basic method for predicting the value of variables based on the data. One that affects the quality of the regression is the spread of the data training. Data training sometimes make less optimal regression model. It can be anticipated by clustering the data first and then building the regression model of each cluster. We are using Spectral Clustering for clustering data, whereas regression model is built with Clusterwise Regression algorithm. The prediction result is obtained by multiplying fuzzy membership data testing with the result of regression equation in each group. This method is tested against several variations dataset compared to standard linear regression methods. Measure of the test used is Root Mean Square Error that computes the error of the predicted results. The smaller the RMSE value indicates the method is the better method in predictioning value. Based on experiments performed, the proposed method is able to predict the score with the error about 3 – 6 percent. Number of clusters as parameter affects the prediction, which is inversely proportional to the value of RMSE.
Keywords: Clusterwise Regression, Clustering, Data Mining, Prediction, Regression, Spectral Clustering
Full Text:
PDF (Bahasa Indonesia)DOI: https://doi.org/10.21107/simantec.v4i1.1040
Refbacks
- There are currently no refbacks.
Copyright (c) 1970 Ahmad Yusuf, Handayani Tjandrasa
Indexed By