PENILAIAN GERAKAN BARIS-BERBARIS BERBASIS AI DAN LSTM PADA SELEKSI PASKIBRAKA
Abstract
PASKIBRAKA member selection is conducted annually at three levels. PASKIBRAKA members must fulfil the criteria, one of which is the Marching Regulations (PBB). In the UN assessment process, sometimes the judges are still subjective. Therefore, it is necessary to have a system with artificial intelligence (AI) integration. The methods used in the system are Mediapipe and Long Short Term Memory (LSTM) algorithm. Mediapipe serves to display 33 keypoints and extract features from these keypoints which will later be processed by LSTM for motion detection. From the test results, the highest accuracy value of each movement is walking in place by 99%, striding by 95%, and regular steps by 97%. While the lowest accuracy value of each movement is walking in place by 12%, striding by 21%, and ordinary steps by 23%. The accuracy value is the result of the analysis of the LSTM model that has been made. The highest accuracy value in each movement comes from the correct movement, while the lowest accuracy value comes from the wrong movement. The accuracy results in the recognition of stride and ordinary steps are influenced by video movements during the transition of the right hand to the left hand which are still detected incorrectly because almost all movements when both hands are in the lower position, causing low accuracy values.
Keywords: Keypoints, Long Short Term Memory, Marching, MediapipeFull Text:
PDF (Bahasa Indonesia)References
Republik Indonesia, “Peraturan Presiden Republik Indonesia Nomor 51 Tahun 2022 Tentang Program Pasukan Pengibar Bendera Pusaka,” Jakarta, Apr. 2022.
N. Diaz and Sulindawaty, “Sistem Pendukung Keputusan Seleksi Calon Peserta Paskibraka Kabupaten Karo Menggunakan Profile Matching,” Jurnal Teknik Informatika (Jutif), vol. 1, no. 2, pp. 87–91, Dec. 2020, doi: 10.20884/1.jutif.2020.1.2.28.
P. S. Santosa et al., “Penanaman Nilai-Nilai Kedisiplinan Melalui Peraturan Baris-Berbaris,” TRIMAS: Jurnal Inovasi dan Pengabdian Kepada Masyarakat, vol. 3, no. 1, 2023, doi: 10.58707/trimas.v3i1.370.
H. Tjahjanto, “Peraturan Panglima Tentara Nasional Indonesia No. 58 tahun 2018 Tentang Peraturan Baris-berbaris (PBB),” Jakarta, Dec. 2018.
A. Fauziah and Y. Saragih, “Sistem Identifikasi Pengukuran Baju Menggunakan Human Body Estimation Dataset Mediapipe Dengan Metode Euclidean Distance,” Aisyah Journal Of Informatics and Electrical Engineering (A.J.I.E.E), vol. 5, no. 2, 2023, doi: 10.30604/jti.v5i2.151.
I. Arifin, R. F. Haidi, and M. Dzalhaqi, “Jurnal Teknologi Terpadu Penerapan Computer Vision Menggunakan Metode Deep,” Jurnal Teknologi Terpadu, vol. 7, no. 2, 2021.
M. Abdul muthalib, I. Irfan, K. Kartika, and S. M. Selamat Meliala, “Pengiraan Pose Model Manusia Pada Repetisi Kebugaran Ai Pemograman Python Berbasis Komputerisasi,” INFOTECH journal, vol. 9, no. 1, pp. 11–19, Jan. 2023, doi: 10.31949/infotech.v9i1.4233.
M. Li and J. Zhao, “Human Sports Action and Ideological and PoliticalEvaluation by Lightweight Deep Learning Model,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/5794914.
F. Daniel Tanugraha, H. Pratikno, M. Musayanah, and W. Indah Kusumawati, “Pengenalan Gerakan Olahraga Berbasis (Long Short- Term Memory) Menggunakan Mediapipe,” Journal of Advances in Information and Industrial Technology, vol. 4, no. 1, 2022, doi: 10.52435/jaiit.v4i1.182.
D. R. Beddiar, M. Oussalah, and B. Nini, “Fall detection using body geometry and human pose estimation in video sequences,” J Vis Commun Image Represent, vol. 82, 2022, doi: 10.1016/j.jvcir.2021.103407.
R. Rijayanti, M. Hwang, and K. Jin, “Detection of Anomalous Behavior of Manufacturing Workers Using Deep Learning-Based Recognition of Human–Object Interaction,” Applied Sciences (Switzerland), vol. 13, no. 15, 2023, doi: 10.3390/app13158584.
M. F. Maulidanitamyizi, H. Hoiriyah, and H. Hozairi, “Sistem Pendukung Keputusan Seleksi Anggota Paskibraka Kabupaten Pamekasan,” J-INTECH, vol. 11, no. 1, 2023, doi: 10.32664/j-intech.v11i1.843.
H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision technology in agricultural automation —A review,” Information Processing in Agriculture, vol. 7, no. 1. 2020. doi: 10.1016/j.inpa.2019.09.006.
A. A. Khan, A. A. Laghari, and S. A. Awan, “Machine Learning in Computer Vision: A Review,” EAI Endorsed Transactions on Scalable Information Systems, vol. 8, no. 32, 2021, doi: 10.4108/eai.21-4-2021.169418.
M. A. Mulya, Zaenul Arif, and Syefudin, “Tinjauan Pustaka Sistematis : Penerapan Metode Gabor Wavelet Pada Computer Vision,” Journal Of Computer Science And Technology (JOCSTEC), vol. 1, no. 2, 2023, doi: 10.59435/jocstec.v1i2.78.
T. Susim and C. Darujati, “Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV,” Jurnal Syntax Admiration, vol. 2, no. 3, 2021, doi: 10.46799/jsa.v2i3.202.
A. Budi, “Implementasi OpenCV Pada Industri dan Kehidupan Sehari-hari,” Crocodic.com.
D. T. Laksono, I. N. Husna, M. Ulum, A. K. Saputro, M. F. Fahmi, and D. N. Purnamasari, “Sistem Deteksi Dan Perhitungan Jumlah Manusia Dalam Ruangan Menggunakan Metode Convolutional Neural Network,” Jurnal Simantec, vol. 11, no. 1, 2022, doi: 10.21107/simantec.v11i1.19745.
M. H. Arshad, M. Bilal, and A. Gani, “Human Activity Recognition: Review, Taxonomy and Open Challenges,” Sensors, vol. 22, no. 17. 2022. doi: 10.3390/s22176463.
V. Bazarevsky and F. Zhang, “On-Device, Real-Time Hand Tracking with MediaPipe,” Google AI Blog. 2019.
R. Mhaiskar, V. Dhandapani, P. Verma, and B. Kaur, “Performance Analysis of Human Activity,” ITM Web of Conferences, vol. 56, p. 05006, 2023, doi: 10.1051/itmconf/20235605006.
M. Wildan Putra Aldi and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin.”
A. Tholib, N. K. Agusmawati, and F. Khoiriyah, “Prediksi Harga Emas Menggunakan Metode LSTM dan GRU,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, 2023, doi: 10.23960/jitet.v11i3.3250.
DOI: https://doi.org/10.21107/simantec.v12i2.26095
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Resty Wulanningrum, Shandy Sadewa Asmoro, Ardi Sanjaya
Indexed By