SISTEM PERAMALAN HASIL PRODUKSI JAGUNG DI KABUPATEN SUMENEP DENGAN PENDEKATAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

Ach Dafid, Hanifudin Sukri, Mahrus Sholeh

Abstract


Forecasting is an attempt to predict future conditions by testing past data. This forecasting is carried out on corn harvest results based on previous corn harvest data including land area, harvest area, and productivity, using the Backpropagation Artificial Neural Network forecasting system. Because the amount of corn harvest data in Sumenep Regency is very complex and changing, the backpropagation method is very suitable to be applied because it is able to handle complex and changing data. The data used in this study were collected from the book “Sumenep in Figures”. The corn production data used were from 2011 to 2023. The results of the study showed that in the scenario of varying the number of learning rates with values of 0.001, 0.2, 0.4, and 0.8, it was found that the smaller the learning rate in the Backpropagation Artificial Neural Network, the better the MSE value in the validation process. The MSE value from the results of testing learning rates of 0.001, 0.2, 0.4, and 0.8 is 0.008998. In the scenario of varying the number of iterations of 100, 500, and 1000, it is concluded that the more iterations in the Backpropagation Neural Network training, the better the MSE value in the validation process. The prediction results in the 2024 corn harvest test showed good and accurate results with a predicted value per June of 336 tons and a monthly error value of 0.0256 so that the prediction results were higher than the actual data.

Keywords: ANN, Backpropagation, Forcasting System, Maize.


References


S. Ratna Komala Putri and A. Fahira, “Observasi Faktor Pendorong Produksi Padi (Studi Kasus Kecamatan Tambakdahan, Subang),” Jurnal Riset Ilmu Ekonomi, vol. 1, no. 3, pp. 131–140, 2021, [Online]. Available: www.jrie.feb.unpas.ac.id

R. P. Somaji, “Analisis Kelembagaan Hulu Industri Tape di Desa Sumber Tengah Kecamatan Binakal Kabupaten Bondowoso,” Jurnal Ekonomi Ekuilibrium, vol. 2, no. 2, pp. 40–51, 2018, [Online]. Available: https://jurnal.unej.ac.id/index.php/JEK

A. Riasari, “Pemberdayaan Masyarakat Berbasis Agribisnis Di Rumah Semai Hely Seedling And Farm Punggur, Lampung Tengah Agribusiness Based Community Empowerment At Hely Seedling And Farm Semai House Punggur, Lampung Central,” Jurnal Pengabdian Masyarakat Indonesia, vol. 2, no. 3, pp. 01–06, 2022.

A. Wahyu Maulana and D. Rochdiani, “Analisis Agroindustri Tahu (Studi Kasus Desa Cisadap),” Jurnal Ilmiah Mahasiswa Agroinfo Galuh, vol. 7, no. 1, pp. 237–243, 2020.

Pribadi Teguh, Irsyada Rahmad, Audytra Hastie, and Fatah Abdul Doni, “Implementasi Algoritma K-Means Untuk Klasterisasi Potensi Desa Pada Sektor Produksi Pertanian Di Kabupaten Bojonegoro,” Jurnal SimanteC, vol. 9, no. 1, pp. 20–28, 2020.

Dawan Daniel and Rumanasen Helena, “Analisis Pengaruh Faktor Produksi Terhadap Produksi Jagung Di Kelurahan Koya Barat Distrik Muara Tami Kota Jayapura,” Jurnal Manajemen dan Bisnis, vol. 2, no. 2, pp. 25–40, 2018.

Jannah Nur, Tangkesalu Dance, and Alamsyar Al, “Faktor Faktor Yang Memengaruhi Produksi Usahatani Jagung Pasca Gempa Di Desa Pandere Kecamtan Gumbasa Kabupaten Sigi,” Jurnal Agrotekbis, vol. 11, no. 1, pp. 181–188, 2023.

Khairunnisa Fawaz Novianda, Saidah Zumi, Hapsari Hepi, and Wulandari Eliana, “Pengaruh Peran Penyuluh Pertanian terhadap Tingkat Produksi Usahatani Jagung,” Jurnal Penyuluhan, vol. 17, no. 2, pp. 113–125, 2021.

A. Bano, J. Suek, S. Nikolaus, and E. Hendrik, “Pengaruh Faktor Sosial Ekonomi Terhadap Produksi Usahatani Jagung Di Desa Badarai Kecamatan Wewiku Kabupaten Malaka,” Buletin Ilmiah IMPAS, vol. 24, no. 3, pp. 186–193, 2023.

F. Zola, “Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa,” JURNAL TEKNOLOGI DAN OPEN SOURCE, vol. 1, no. 1, 2018, doi: 10.36378/jtos.v1i1.12.

A. Zulhamsyah, S. Saifullah, and M. R. Lubis, “Penerapan Backpropagation Dalam Memprediksi Produksi Kelapa Sawit Unit Kebun Marjandi,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, 2019, doi: 10.30865/komik.v3i1.1693.

D. A. Putri, B. Hananto, S. Afrizal, and A. B. Pangaribuan, “Prediksi Program Studi Berdasarkan Nilai Siswa Dengan Algoritma Backpropagation (Studi Kasus SMAN 6 Depok Jurusan IPS),” Informatik : Jurnal Ilmu Komputer, vol. 15, no. 2, 2020, doi: 10.52958/iftk.v15i2.1420.

N. A. Putri, D. E. Ratnawati, and B. Rahayudi, “Prediksi Kebangkrutan Menggunakan Metode Backpropagation (Studi Kasus: Perseroan Terbatas Terdaftar Pada Bursa Efek Indonesia),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, 2019.

A. Lusiana and P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X,” Industri Inovatif : Jurnal Teknik Industri, vol. 10, no. 1, 2020, doi: 10.36040/industri.v10i1.2530.

J. I. Mwaura and B. K. Kenduiywo, “County level maize yield estimation using artificial neural network,” Model Earth Syst Environ, vol. 7, pp. 1417–1424, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:221346190

A. Wanto et al., “Model of Artificial Neural Networks in Predictions of Corn Productivity in an Effort to Overcome Imports in Indonesia,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Dec. 2019. doi: 10.1088/1742-6596/1339/1/012057.

Y. Liu, C. Jiang, C. Lu, Z. Wang, and W. Che, “Increasing the Accuracy of Soil Nutrient Prediction by Improving Genetic Algorithm Backpropagation Neural Networks,” Symmetry (Basel), vol. 15, no. 1, Jan. 2023, doi: 10.3390/sym15010151.

K. F. Irnanda, A. P. Windarto, and I. S. Damanik, “Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, p. 122, Mar. 2022, doi: 10.30865/jurikom.v9i1.3836.

F. Zola, G. W. Nurcahyo, and J. Santony, “Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa,” Jurnal Teknologi dan Open Source, vol. 1, no. 1, pp. 58–72, 2018.

E. Epta Saputra, “Metode SDLC Waterfall Pada Rancang Bangun Sistem Informasi Sekolah SMP Negeri 10 Kaur”, [Online]. Available: https://jurnal.ikhafi.or.id/index.php/jusibi




DOI: https://doi.org/10.21107/simantec.v12i2.26036

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ach Dafid, Hanifudin Sukri, Mahrus Sholeh

slot gacor

Presidenslot

bonus new member

QQ188

slot

batmantoto

slot gacor

slot gacor

slot gacor

slot olympus

slot demo

slot deposit 1000

slot gacor

slot88

rokokbet

slot88

slot gacor

rokokbet

slot resmi

rokokbet

https://sandiegohills.org/

Situs Toto

Situs Toto

Dana4d

Situs Toto

Pan4D

Toto 4d

slot777

https://lppm.stba-jia.ac.id/

slot88

https://ppki.stba-jia.ac.id/

https://pmb.iainkudus.id/

https://jim.iainkudus.id/

slot777

Situs Toto

Slot777

SITUS TOTO

PAN4D

PAN4D

Slot88

Toto 4d

situs toto

slot88

https://iboninternational.org/about-us

https://jurnalkommas.com/docs/Jurnal

https://www.wulaguda.com.au/gallery

slot thailand

bonus new member

togelin

situs toto

hokijp168

paris88

slot gacor

vegas123

situs slot

miya4d

slot gacor

mahjong ways 2

DPRBET

dollar4d

levis4d

buku mimpi

laetoto

Slot Gacor

slot pulsa

slot777

slot gacor gampang menang

Indexed By

slot

slot777

slot gacor maxwin

slot777

slot gacor

slot gacor

slot777

merahtoto

merahtoto

slot777

hijautoto

kuningtoto

game slot

kuningtoto slot

kuningtoto

link kuningtoto

birutoto

birutoto

slot gacor

ungutoto

link ungutoto

slot gacor

ungutoto

togel online 4d

tototogel

bandar togel

game online

slot gacor

situs gacor

merahtoto

kuningtoto

kuningtoto

merahtoto

hijautoto

hijautoto

hijautoto

hijautoto

birutoto

slot88

merahtoto

merahtoto

merona4d

merona4d

merona4d

merona4d

merona4d

merona4d

merona4d

merona4d

slot gacor maxwin

birutoto

birutoto