A COMPARISON OF SUPERVISED LEARNING METHODS FOR FORECASTING TIME SERIES IN OUTSIDE PATIENT VISITS
Abstract
Data is something important because it can be used to help make a decision or policy in an organization. One form of output from the use of data is to produce forecasts in the future. One of the organizations that need forecasting is the hospital. Data that can be used for forecasting is patient visit data. The purpose of this study is to compare several supervised learning methods in the case of forecasting outpatient visit data, by producing a model result from the experimental process of KNN, SVR, Decision Tree, Random Forest and Linear Regression methods. From the Plot Time Series data for outpatient visits, autocorrelation results using the ACF method have a significance level, namely at lag 1 = 0.797, lag 2 = 0.6, and lag 3 = 0.579. So that the formation of the dataset is found that the current data 15Yt"> has an influence on the data one month earlier 15Xt-1"> , the previous two months 15Xt-2"> , and the previous three months 15Xt-3"> . The results of the forecasting model carried out resulted that the random forest method had the best model with an evaluation value of the RMSE model of 204.43 and the MAPE value of 12%. Based on the criteria for the MAPE value, the model that has been made has a good category.
Full Text:
PDF (Bahasa Indonesia)References
D. M. Rani, B. N. Widyaningrum, N. Hasanah, “Analisis Trend Jumlah Kunjungan Pasien Saat Pandemi dengan Metode Trend Kuadrat Terkecil Di Rumah Sakit Panti Wilasa dr. Cipto Semarang”. Jurnal Rekam Medis dan Informasi Kesehatan Indonesia (Jurmiki), vol. 01, no.01, 2021.
M. Yunihati, Z. Basem, A. Setiawan, “Pengaruh Fasilitas Dan Tarif Pelayanan Terhadap Kunjungan Pasien Pada Klinik Dokter Junaidi Kecamatan Kampa”. Jurnal Riset Managemen Indonesia, vol. 2, no.4, 2020.
V. Andita, W. Hermawat, N. S. Hartati, “Pengaruh Jumlah Pelayanan Rawat Jalan, Rawat Igd Dan Rawat Inap Terhadap Tingkat Pendapatan Rumah Sakit Umum Daerah (RSUD) Cideres Kabupaten Majalengka”. Jurnal Manajemen Sekolah Tinggi Ilmu Ekonomi Cirebon, vol. 14, no.2, 2019.
Y. A. Ozcan, Quantitative Methods in Health Care Management, 2nd ed. San Fransisco: JohnWiley & Sons, 2009.
J. Thongkam, V. Sukmak, W. Mayusiri, “A comparison of regression analysis for predicting the daily number of anxiety-related outpatient visits with different time series data mining”. KKU Engineering Journal, July – September 2015;42(3):243-249, 2015.
T. Khotimah dan R. Nindyasari, “Forecasting dengan metode regresi linier pada sistem penunjang keputusan untuk memprediksi jumlah penjualan batik (studi kasus: Kub Sarwo Endah Batik Tulis Lasem)” J. Mantik Penusa, vol. 1, no. 1, hlm. 71–92, 2017.
C. C. Anggarwal, Data Mining The Textbook, Springer International Publishing Switzerland, 2015.
R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications With R Examples, 3rd ed. New York: Springer, 2011.
W-C. Juang, S-J. Huang, F-F Huang, et al, Application of time series analysis in modelling and forecasting emergency department visits in a medical centre in Southern Taiwan. BMJ Open 2017;7:e018628. doi:10.1136/ bmjopen-2017-018628. 2017.
H. Kinaci, M. G. Unsal, R. Kasap, “A close look at 2019 novel coronavirus (COVID 19) infections in Turkey using time series analysis & efficiency analysis”. Chaos, Solitons and Fractals,https://doi.org/10.1016/j.chaos.2020.110583, 2021.
Y. Zhang, L. F Z. R. Kong, J. Yang, et al, “Emergency patient flow forecasting in the radiology department. Health Informatics Journal, Article 1460458220901889, 2020.
Kemenkes, Aplikasi RS Online. Website: https://sirs.kemkes.go.id/fo/, diakses tanggal 27 Januari 2022.
C. F. Institute, Autocorrelation. Website:https://corporatefinanceinstitute.com/resources/knowledge/other/autocorrelation/, diakses tanggal 5 Februari 2022.
E. C. Science, Applied Regression Modeling, 2nd edition. Website: https://online.stat.psu.edu/stat462/node/188/, diakses tanggal 7 Februari 2022.
O. Center, SpeedyWiki & BelajarWiki,Website: https://lms.onnocenter.or.id/wiki/index.php/Orange, diakses tanggal 11 Februari 2021.
M. Cristian, “Average Monthly Rainfall Forecast in Romania by Using K-Nearest Neighbors Regression”. Annals of the „Constantin Brâncuşi”, 4, 5-12. 2018.
D. S. Seruni, M. T. Furqon, R. C. Wihandika, “Sistem Prediksi Pertumbuhan Jumlah Penduduk Kota Malang menggunakan Metode K-Nearest Neighbor Regression”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 4, No. 4, hlm. 1075-1082, 2020.
L. Y Kurniawati, H. Tjandrasa, I. Arieshanti, Prediksi Pergerakan Harga Saham Menggunakan Support Vector Regression. Jurnal Simantec, Vol 4, No. 1, 2014.
C. W. Hsu, C. C. Chang, C. J. Lin, A Practical Guide to Support Vector Classificaton. Taipei : Department of Computer Science National Taiwan University. 2016.
V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer. 1995.
Robianto, S. H. Sitorus, . U. Rustian, “Penerapan Metode Decision Tree Untuk Mengklasifikasikan Mutu Buah Jeruk Berdasarkan Fitur Warna Dan Ukuran”. Jurnal Komputer dan Aplikasi. vol 09, No. 01, 2021.
A. Izyuddin, S. Wibisono “Jurnal ManajemenInformatika & Sistem Informasi. International”. Jurnal Manajemen Informatika & Sistem Informasi), vol. 3, no. 2, 2020.
M. Rianto, R. Yunis, “Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest”. Paradigma, vol. 23, no.1, 2021.
R. Kabir, F. B. Ashraf, F, R. Ajwad, “Analysis of Different Predicting Model for Online Shoppers”. International Conference on Computer and Information Technology (ICCIT). DOI:10.1109/ICCIT48885.2019.9038521. 2019.
M. L. Suliztia, “Penerapan Analisis Random Forest Pada Prototype Sistem Prediksi Harga Kamera Bekas Menggunakan Flask”, S.Si. skripsi, Universitas Islam Indonesia, Yogyakarta, 2020.
S. P. Neill, M. R. Hashemi. Ocean Modelling for Resource Characterization. Fundamentals of Ocean Renewable Energy, 193–235. doi:10.1016/b978-0-12-810448-4.00008-2, 2018.
D. C. Montgomery, C. L. Jennings, M. Kulahci. Introduction To Time Series Analysis And Forecasting. Canada: John Wiley And Sons, Inc. 2015.
J. J. Montaño Moreno, A. Palmer Pol, A. Sesé Abad, and B. Cajal Blasco, “Using the R-MAPE index as a resistant measure of forecast accuracy,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013.
J.D. Cryer and K-S. Chan. Time Series Analysis: With Apllication in R, Second Edition. USA : Springer Science+Businiess Media, LLC . 2008.
DOI: https://doi.org/10.21107/simantec.v10i2.14010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Heri Supriyanto
Indexed By