Review Aktivitas Fotosintesis pada Tanaman Sorgum (Sorghum bicolor) dalam Kondisi Cekaman Kekeringan

Mukhamad Su'udi, Arsetyo Rahardianto, Miatin Alvin Septianasari, Veren Yuliana Saputri, Dwi Setyati, Fuad Bahrul Ulum

Abstract

Sorghum (Sorghum bicolor L. Moench) is a cereal crop that has the potential to be developed in Indonesia as a food, feed and industrial crop. Sorghum is a C4 plant that has the advantage of efficiency in hot and dry environments. Drought stress is one of the most limiting environmental factors for crop productivity worldwide, and can be caused by water deficits in the soil and in the atmosphere. On the decreasing leaf water status, the rate of CO2 assimilation and the conductance of stomata decreased rapidly. The CO2 concentration mechanism is able to saturate C4 photosynthesis under the relatively low intercellular CO2 concentration. In addition, CO2 photorespiration is likely to be repaired before it exits the bundle sheat cells. The effects of non-stomatal factors include reduced activity of photosynthetic enzymes, inhibition of nitrate assimilation, induction of premature aging, and changes in leaf anatomy. Photosynthesis in C4 plants, including sorghum, involves, others, the PEPC and Rubisco enzymes. Drought can also trigger oxidative stress, which is an environmental condition that has increased Reactive Oxygen Species (ROS) due to an over reduction of the photosynthesis process.

Keywords

C4 plant, drought stress, enzyme, photosynthesis, Sorghum bicolor

References

Abdel-Ghany, S. E., F. Ullah, A. Ben-Hur, & A. S. N. Reddy. 2020. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to peg-induced drought stress. International Journal of Molecular Sciences, 21(3), 1–26. https://doi.org/10.3390/ijms21030772

Agurla, S., S. Gahir, S. Munemasa, Y. Murata, & A. S. Raghavendra. 2018. Mechanism of stomatal closure in plants exposed to drought and cold stress. Advances in Experimental Medicine and Biology, 1081, 215–232. https://doi.org/10.1007/978-981-13-1244-1_12

Ahuja, I., R. C. H. de Vos, A. M. Bones, & R. D. Hall. 2010. Plant molecular stress responses face climate change. Trends in Plant Science, 15(12), 664–674. https://doi.org/10.1016/j.tplants.2010.08.002

Ashraf, M., & P. J. C. Harris. 2013. Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163–190. https://doi.org/10.1007/s11099-013-0021-6

Badigannavar, A., N. Teme, A. C. de Oliveira, G. Li, M. Vaksmann, V. E. Viana, T. R. Ganapathi, & F. Sarsu. 2018. Physiological, genetic and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Plant Physiology, 23(4), 670–688. https://doi.org/10.1007/s40502-018-0416-2

Caburatan, L., & J. Park. 2021. Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase. Plants (Basel, Switzerland), 10(9), 1887. https://doi.org/10.3390/plants10091887

Chaves, M. M., J. Flexas, & C. Pinheiro. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125

Christine H., F., & N. Graham. 2000. Tansley Review No . 112 Oxygen processing in photosynthesis : regulation and signalling. New Phytologist, 146(112), 359–388.

Cousins, A. B., & A. J. Bloom. 2003. Influence of elevated CO2 and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (Zea mays L.). Plant, Cell and Environment, 26(9), 1525–1530. https://doi.org/10.1046/j.1365-3040.2003.01075.x

Crimp, S. J., Flood, N. R., Carter, J. O., Conroy, J. P., & McKeon, G. M. (2002). Evaluation of the potential impacts of climate change on native pasture production: implications for livestock carrying capacity.

Damour, G., T. Simonneau, H. Cochard, & L. Urban. 2010. An overview of models of stomatal conductance at the leaf level. Plant, Cell and Environment, 33(9), 1419–1438. https://doi.org/10.1111/j.1365-3040.2010.02181.x

Daszkowska-Golec, A., & I. Szarejko. 2013. Open or close the gate - Stomata action under the control of phytohormones in drought stress conditions. Frontiers in Plant Science, 4(MAY), 1–16. https://doi.org/10.3389/fpls.2013.00138

Efendi, R., M. Aqil, & M. Pabendon. 2013. Evaluasi Genotipe Sorgum Manis (Sorgum bicolor (L.) Moench) Produksi Biomas Dan Daya Ratun Tinggi. Jurnal Penelitian Pertanian Tanaman Pangan, 32(2), 116–125. http://ejurnal.litbang.pertanian.go.id/index.php/jpptp/article/view/2887/2514

Filichkin, S. A., M. Hamilton, P. D. Dharmawardhana, S. K. Singh, C. Sullivan, A. Ben-Hur, A. S. N. Reddy, & P. Jaiswal. 2018. Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Frontiers in Plant Science, 9(February), 1–17. https://doi.org/10.3389/fpls.2018.00005

Fresneau, C., J. Ghashghaie, & G. Cornic. 2007a. Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat ( Triticum durum L .): role of leaf internal CO 2. 58(11), 2983–2992. https://doi.org/10.1093/jxb/

Fresneau, C., J. Ghashghaie, & G. Cornic. 2007b. Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): Role of leaf internal CO2. Journal of Experimental Botany, 58(11), 2983–2992. https://doi.org/10.1093/jxb/erm150

Galyuon, I. K., A. P. Gay, C. T. Hash, F. R. Bidinger, & C. J. Howarth. 2019. Full Length Research Paper A comparative assessment of the performance of a stay-green sorghum ( Sorghum bicolor ( L ) Moench ) introgression line developed by marker-assisted selection and its parental lines. 18(26), 548–563. https://doi.org/10.5897/AJB2019.16826

Ghannoum, O. 2009. C4 photosynthesis and water stress. Annals of Botany, 103(4), 635–644. https://doi.org/10.1093/aob/mcn093

Golding, A. J., & G. N. Johnson. 2003. Down-regulation of linear and activation of cyclic electron transport during drought. Planta, 218(1), 107–114. https://doi.org/10.1007/s00425-003-1077-5

Hetherington, A. M., & F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901–908. https://doi.org/10.1038/nature01843

Kim. 2011. Guard Cell Signal Transduction Network. 561–591. https://doi.org/10.1146/annurev-arplant-042809-112226.Guard

Kinoshita, T., & Y. Hayashi. 2011. New insights into the regulation of stomatal opening by blue light and plasma membrane H + -ATPase. In International Review of Cell and Molecular Biology (1st ed., Vol. 289). Elsevier Inc. https://doi.org/10.1016/B978-0-12-386039-2.00003-1

Kogan, F., W. Guo, & W. Yang. 2019. Drought and food security prediction from NOAA new generation of operational satellites. Geomatics, Natural Hazards and Risk, 10(1), 651–666. https://doi.org/10.1080/19475705.2018.1541257

Kollist, H., M. Jossier, K. Laanemets, & S. Thomine. 2011. Anion channels in plant cells. FEBS Journal, 278(22), 4277–4292. https://doi.org/10.1111/j.1742-4658.2011.08370.x

Lestario, L. N., S. Sugiarto, K. H. Timotius, P. S. Kimia, F. Sains, U. Kristen, S. Wacana, & J. Diponegoro. 2018. AKTIVITAS ANTIOKSIDAN DAN KADAR FENOLIK TOTAL DARI GANGGANG MERAH ( Gracilaria verrucosa L .) [ Antioxidant Activity and Total Phenolic Content of Red Sea Weed ( Gracilaria verrucosa L . ) ]. Jurnal Teknologi Dan Industri Pangan, 19(2), 131–139.

Massacci, A., A. Battistelli, & F. Loreto. 1996. Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum. Australian Journal of Plant Physiology, 23(3), 331–340. https://doi.org/10.1071/PP9960331

Michelet, L., M. Zaffagnini, S. Morisse, F. Sparla, M. E. Pérez-Pérez, F. Francia, A. Danon, C. H. Marchand, S. Fermani, P. Trost, & S. D. Lemaire. 2013. Redox regulation of the Calvin-Benson cycle: Something old, something new. Frontiers in Plant Science, 4(NOV), 1–21. https://doi.org/10.3389/fpls.2013.00470

Muller, B., F. Pantin, M. Génard, O. Turc, S. Freixes, M. Piques, & Y. Gibon. 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62(6), 1715–1729. https://doi.org/10.1093/jxb/erq438

Negi, J., M. Hashimoto-Sugimoto, K. Kusumi, & K. Iba. 2014. New approaches to the biology of stomatal guard cells. Plant and Cell Physiology, 55(2), 241–250. https://doi.org/10.1093/pcp/pct145

Osakabe, Y., K. Osakabe, K. Shinozaki, & L. S. P. Tran. 2014. Response of plants to water stress. Frontiers in Plant Science, 5(MAR), 1–8. https://doi.org/10.3389/fpls.2014.00086

Osmolovskaya, N., J. Shumilina, A. Kim, A. Didio, T. Grishina, T. Bilova, O. A. Keltsieva, V. Zhukov, I. Tikhonovich, E. Tarakhovskaya, A. Frolov, & L. A. Wessjohann. 2018. Methodology of drought stress research: Experimental setup and physiological characterization. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19124089

Panahi, B., B. Abbaszadeh, M. Taghizadeghan, & E. Ebrahimie. 2014. Genome-wide survey of Alternative Splicing in Sorghum Bicolor. Physiology and Molecular Biology of Plants, 20(3), 323–329. https://doi.org/10.1007/s12298-014-0245-3

Pandey, P., V. Irulappan, M. V. Bagavathiannan, & M. Senthil-Kumar. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8(April), 1–15. https://doi.org/10.3389/fpls.2017.00537

Pinheiro, C., & M. M. Chaves. 2011. Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869–882. https://doi.org/10.1093/jxb/erq340

Pirasteh-Anosheh, H., A. Saed-Moucheshi, H. Pakniyat, & M. Pessarakli. 2016. Stomatal responses to drought stress. Water Stress and Crop Plants: A Sustainable Approach, 1–2(June), 24–40. https://doi.org/10.1002/9781119054450.ch3

Pons, T. L., J. Flexas, S. Von Caemmerer, J. R. Evans, B. Genty, M. Ribas-Carbo, & E. Brugnoli. 2009. Estimating mesophyll conductance to CO2: Methodology, potential errors, and recommendations. Journal of Experimental Botany, 60(8), 2217–2234. https://doi.org/10.1093/jxb/erp081

Reay, D., C. Sabine, P. Smith, & G. Hymus. 2007. Intergovernmental Panel on Climate Change. Fourth Assessment Report. Geneva, Switzerland: Inter-gov- ernmental Panel on Climate Change. Cambridge; UK: Cambridge University Press; 2007. Available from: www. ipcc.ch. In Intergovernmental Panel on Climate Change. https://doi.org/10.1038/446727a

Suarni. 2009. Potential of corn flour and sorghum as wheat substitution in processed products. Iptek. Tan. Pang., 4(2), 181–193.

Takahashi, F., T. Kuromori, H. Sato, & K. Shinozaki. 2018. Regulatory gene networks in drought stress responses and resistance in plants. Advances in Experimental Medicine and Biology, 1081, 189–214. https://doi.org/10.1007/978-981-13-1244-1_11

Tao, Y., B. George-Jaeggli, M. Bouteillé-Pallas, S. Tai, A. Cruickshank, D. Jordan, & E. Mace. 2020. Genetic diversity of C4 photosynthesis pathway genes in sorghum bicolor (L.). Genes, 11(7), 1–15. https://doi.org/10.3390/genes11070806

Tari, I., G. Laskay, Z. Takács, & P. Poór. 2013. Response of sorghum to abiotic stresses: A review. Journal of Agronomy and Crop Science, 199(4), 264–274. https://doi.org/10.1111/jac.12017

Tezara, W. M. V. J., Mitchell, V. J., Driscoll, S. D., & Lawlor, D. W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756), 914-917.

von Caemmerer, S., & J. R. Evans. 2010. Enhancing C3 Photosynthesis. Plant Physiology, 154(2), 589–592. https://doi.org/10.1104/pp.110.160952

Wang, W. Bin, Y. H. Kim, H. S. Lee, K. Y. Kim, X. P. Deng, & S. S. Kwak. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570–577. https://doi.org/10.1016/j.plaphy.2009.02.009

Zegada-Lizarazu, W., & A. Monti. 2013. Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages. Physiologia Plantarum, 149(1), 56–66. https://doi.org/10.1111/ppl.12016

DOI

https://doi.org/10.21107/rekayasa.v15i2.9799

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 mukhamad su'udi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.