Pengembangan Studi Gasifikasi Tongkol Jagung Untuk Meningkatkan Performa Reaktor Downdraft Dengan Masukan Dua Udara Bertingkat

Ibnu Irawan, Nizar Amir, Khairil Budiarto

Abstract

Gasification is a technology for converting solid biomass into syngas. Corn cobs biomass is converted into pellets to obtain more homogeneous fuel. The downdraft gasifier type is used to have low tar content. The research was conducted to see the effect of the ratio of air and ER on the reactor temperature and the gas composition of CO, H2 and CH4. For pyrolysis and oxidation zones, air enters with variations (AR.Pir-Ox), namely 0%; 70%; 80%; and 90% in the intake air 14.5; 19.3; and 24.1 Nm3 / hr of E.R 0.3, 0.4, and 0.5. The air intake for each zone is regulated using a tap. Temperature measurement using type K thermocouple. Downdraft reactor performance is obtained by looking at the syngas content in CO, H2, and CH4 meters. The results showed the effect of AR.Pir-Oks with an air input of 24.10 Nm3 /h with E.R 0.5 having the highest temperature of 910oC, in the oxidation zone. This stratified air input plays a role in increasing the temperature along the altitude zone. The increase in the introduced oxygen produces an increase in heat. Syngas production in an air flow of 19.3 Nm3 / hour with a ratio of 90% pyrolysis and oxidation zone (ARPir-Oks), is the reactor produces gas products with a composition of 22.5% CO, 0.96% CH4, and 15.55 H2 %. The results of this test prove that the air entering the pyrolysis zone can provide additional syngas composition.


Keywords

corn cobs; downdraft reactor; multiple air intake; syngas

References

Basu, P. (2010). Biomass Characteristics. In Biomass Gasification Design Handbook (First Edit). © 2010 Elsevier Inc. https://doi.org/10.1016/b978-0-12-374988-8.00002-7

Bhardwaj, S., Sharon, M., & Sharon, M. (2009). Pyrolysis. In Pyrolysis: Types, Processes, and Industrial Sources and Products. Elsevier Inc. https://doi.org/10.1201/9781420078848.ch25

Chen, Y., Luo, Y. H., Wu, W. G., & Su, Y. (2009). Experimental investigation on tar formation and destruction in a lab-scale two-stage reactor. Energy and Fuels, 23(9), 4659–4667. https://doi.org/10.1021/ef900623n

Gafur, A. (2017). Studi Eksperimantal Gasifikasi Pelepah Kelapa Sawit untuk Meningkatkan Performansi Reaktor Downdraft dengan Masukan Udara Bertingkat.

Galindo, A. L., Lora, E. S., Andrade, R. V., Giraldo, S. Y., Jaén, R. L., & Cobas, V. M. (2014). Biomass gasification in a downdraft gasifier with a two-stage air supply: Effect of operating conditions on gas quality. Biomass and Bioenergy, 61, 236–244. https://doi.org/10.1016/j.biombioe.2013.12.017

Guo, F., Dong, Y., Dong, L., & Guo, C. (2014). Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study. International Journal of Hydrogen Energy, 39(11), 5625–5633. https://doi.org/10.1016/j.ijhydene.2014.01.130

Khonde, R., & Chaurasia, A. (2016). Rice husk gasification in a two-stage fixed-bed gasifier: Production of hydrogen rich syngas and kinetics. International Journal of Hydrogen Energy, 41(21), 8793–8802. https://doi.org/10.1016/j.ijhydene.2016.03.138

Martínez, J. D., Silva Lora, E. E., Andrade, R. V., & Jaén, R. L. (2011). Experimental study on biomass gasification in a double air stage downdraft reactor. Biomass and Bioenergy, 35(8), 3465–3480. https://doi.org/10.1016/j.biombioe.2011.04.049

Molino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25. https://doi.org/10.1016/j.jechem.2015.11.005

Nhuchhen, D. R., & Salam, P. A. (2012). Experimental study on two-stage air supply downdraft gasifier and dual fuel engine system. Biomass Conversion and Biorefinery, 2(2), 159–168. https://doi.org/10.1007/s13399-012-0041-7

Putera, P. B., Hermawati, W., & Poerbosisworo, I. R. (2016). Kecenderungan Perkembangan Teknologi Gasifikasi Biomassa: Studi Perbandingan Di Beberapa Negara (The Trend of Technological Development of Biomass Gasification: A Comparative Study in Several Countries). SSRN Electronic Journal, 113–126. https://doi.org/10.2139/ssrn.2724343

Raman, P., Ram, N. K., & Gupta, R. (2013). A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis. Energy, 54, 302–314. https://doi.org/10.1016/j.energy.2013.03.019

Suhendi, E., Paradise, G. U., & Priandana, I. (2017). Pengaruh Laju Alir Udara Dan Waktu Proses Gasifikasi Terhadap Gas Producer Limbah Tangkai Daun Tembakau Menggunakan Gasifier Tipe Downdraft. Jurnal Bahan Alam Terbarukan, 5(2), 45–53. https://doi.org/10.15294/jbat.v5i2.6054

Šulc, J., Štojdl, J., Richter, M., Popelka, J., Svoboda, K., Smetana, J., Vacek, J., Skoblja, S., & Buryan, P. (2012). Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation? Waste Management, 32(4), 692–700. https://doi.org/10.1016/j.wasman.2011.08.015

Suliono, S., Sudarmanta, B., Dionisius, F., & Maolana, I. (2017). Studi Karakteristik Reaktor Gasifikasi Type Downdraft Serbuk Kayu Dengan Variasi Equivalensi Ratio. JTT (Jurnal Teknologi Terapan), 3(2), 37–43. https://doi.org/10.31884/jtt.v3i2.60

Surjosatyo, A., Vidian, F., Nugroho, Y. S., Indonesia, U., & Sriwijaya, U. (2010). a Review on Gasifier Modification for Tar Reduction in Biomass Gasification. 31, 62–77.

DOI

https://doi.org/10.21107/rekayasa.v14i1.9172

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ibnu Irawan, Nizar Amir

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.