Identifikasi Acute Lymphoblastic Leukemia pada Citra Mikroskopis Menggunakan Algoritma Naïve Bayes
Abstract
Leukemia is a type of blood cancer that occurs when the body overproduces abnormal white blood cells. Acute Lymphoblastic Leukemia (ALL) is a type of acute leukemia. ALL occurs when the spinal cord is excessively producing young lymphocytes, known as lymphoblasts. Leukemia is difficult to detect because it has the same symptoms as other diseases. One way to detect leukemia is to use a complete blood count test. Blood count test is done by calculating the population of red blood cells, white blood cells and platelets. The health condition of the body is indicated by the number of each blood cell. The small number of erythrocyte and abnormal cell shape is indicative of leukemia. How to identify leukemia still using a microscope. In this study the researchers made a way of identifying acute lymphoblastic leukemia cells by image processing, include cropping, segmentation, feature extraction and identification. The method used in image identification is Naïve Bayes Classifier (NBC). NBC is a classification method which applies simple probability calculations using Bayes theorem. The white blood cell image tested using this application will be evaluated with accurations. The greatest accuracy results from several test scenarios obtained 80% accuracy.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Chandra,E.M & Yulindon, R. H. (2020). Implementasi Sistem Pakar Guna Mendiagnosa Penyakit Cacar Air Dengan Metode Bayes. Inspiration : Jurnal Teknologi Informasi dan Komunikasi, 10(1), 21–26.
Fifin, D. R. (2010). Pengenalan pola citra leukosit dengan metode ekstraksi fitur citra. Jurnal Pendidikan Fisika Indonesia, 6, 133–137.
Fitra, Y. A., Tjandrasa, H., & Wijaya, A. Y. (n.d.). Implementasi segmentasi nukleus pada citra jaringan kanker dengan pendekatan berbasis morfologi. 1–9.
Hasyimzoem,N.C. (2014). Leukemia Limfoblastik Akut Pada Dewasa Dengan Multiple Limfadenopati. Medula, 2(1), 30–38.
Hiremath, P. S. (2010). Automated Identification and Classification of White Blood Cells (Leukocytes) in Digital Microscopic Images.
Noercholis, A., & Muslim, M. A. (2013). Ekstraksi Fitur Roundness untuk Menghitung Jumlah Leukosit dalam Citra Sel Darah Ikan. 7(1), 35–40.
Putzu, L., Caocci, G., & Di, C. (2014). Leucocyte classification for leukaemia detection using image processing techniques. Artificial Intelligence In Medicine. https://doi.org/10.1016/j.artmed.2014.09.002
Rafael Gonzales. (2018). Digital Image Processing.
Reta, C., Leopoldo Altamirano, Gonzales, J. A., Diaz, R., & Guichard, J. S. (2010). Segmentation of Bone Marrow Cell Images for Morphological Classification og Acute Leukemia. Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010), (Flairs), 86–91.
Scotti, F. (2010). Acute Lymphoblastic Leukemia Image Database for Image Processing. Diambil dari https://homes.di.unimi.it/scotti/all/
Setiawan, A. (2010). Pengembangan Alat Penghitung Sel Darah. Diambil dari https://www.dw.com/id/pengembangan-alat-penghitung-sel-darah/a-6326036
Suratin, M. D. (2015). Identifikasi Sel Acute Lymphoblastic Leukemia ( ALL ) pada Citra Peripheral Blood Smear Berdasarkan Morfologi Sel Darah Putih. elektronik Jurnal Arus Elektro Indonesia (eJAEI), 7–12.
Suryani, E., Salamah, U., & Wijaya, A. A. (2014). Identifikasi Penyakit Acute Myeloid Leukemia ( AML ) Menggunakan ‘ Rule Based System ’ Berdasarkan Morfologi Sel Darah Putih Studi Kasus : AML2 dan AML4. 2014(November), 193–199.
Syidada, S., Suciati, N., & Fatichah, C. (2014). Segmentasi Sel Darah Putih Berdasarkan Warna Menggunakan K-Means Dan Operasi Morfologi. Melek IT Information Technology Journal, 3(2).
Pradana, T.P & Suryani, E. W. (2013). Pemanfaatan Seed Region Growing Segmentation dan Momentum Backpropagation Neural Network untuk Klasifikasi Jenis Sel Darah Putih.
Willy, T. (2019). Leukemia. Diambil dari Alodokter website: https://www.alodokter.com/leukemia
DOI
https://doi.org/10.21107/rekayasa.v14i1.9110Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Bagus Hariyanto, Shofiya Syidada
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.