Cultivation of Spirulina platensis and Nannochloropsis oculata for nutrient removal from municipal wastewater
Abstract
Domestic wastewater contains a high average nutrient ammonia-N (NH3-N) and total phosphate (PO43--P). This nutrient content has the potential to cause eutropication in water bodies. To prevent this eutropication, it is necessary to treat domestic wastewater. Currently, processing technology is needed that is useful for improving the quality of processed wastewater and a small amount of byproduct. One of these technologies is processing with a microalgae system, where the algae can be used to become biodiesel. Two types of microalgae that have the potential to produce biodiesel are Spirulina platensis and Nannochloropsis oculate. The cultivation of the two types of microalgae was carried out in the domestic wastewater media of Jakarta City by providing 24-hour lighting with UV-A and UV-B. The specific growth rates of Spirulina platensis and Nannochloropsis oculate were not much different, namely 0.0279 h-1 and 0.0282 h-1. The microalgae Spirulina platensis and Nannochloropsis oculate respectively reduced NH3-N nutrients by 82% and 80%, while PO43-P was 65.2% and 63.7%. The pH value during processing shows in the normal pH range. Total dissolved solids (TDS) in the processing process also decreased in a span of 48 hours.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Anugroho, F., Aji, A. D., & Putri, D. K. (2019). Evaluasi Kinerja Instalasi Pengolahan Air Limbah MCK (IPAL-MCK) Berbasis Biofilm Mikroalga Skala Rumah Tangga. Jurnal Sumberdaya Alam dan Lingkungan, 5(3), 21-27.
APHA. (1989). Standard methods for the examination of water and waste water. American Public Health Association (APHA) (17 ed.). Washington: American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF).
Apritama, M. R., Suryawan, I., Afifah, A. S., & Septiariva, I. Y. (2020). Phytoremediation of effluent textile wwtp for NH3-N and Cu reduction using pistia stratiotes. Plant Archives. 21(1).
Bezerra, R. P., Matsudo, M. C., Sato, S., Perego, P., Converti, A., & de Carvalho, J. C. (2012). Effects of photobioreactor configuration, nitrogen source and light intensity on the fed-batch cultivation of Arthrospira (Spirulina) platensis. Biomass and Bioenergy, 37, 309-317.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
Colla, L. M., Thomé, A., Reinehr, C. O., Bertolin, T. E., & Costa, J. A. (2015). Potential of live Spirulina platensis on biosorption of hexavalent chromium and its conversion to trivalent chromium. International journal of phytoremediation, 17(9), 861-868.
Dwijayanti, N. P., ISuprihatin, I. E., & Putra, K. G. (2016). Fitoekstraksi Cu, Cr Dan Pb Limbah Tekstil dengan Tumbuhan Kiambang (Pistia stratiotes L). JURNAL KIMIA, 10(2), 275-280.
Franco, M. C. (2014). Batch cultivation of microalgae in the Labfors 5 Lux Photobioreactor with LED Flat Panel Option. Infors AG.
Göksan, T., Zekeriyaoğlu, A., & Ak, İ. (2007). The growth of Spirulina platensis in different culture systems under greenhouse condition. Turkish Journal of Biology, 31(1), 47-52.
Guifang, X. (2010). Study on Purified Efficiency of Phosphorus and Nitrogen from Eutrophicated Landscape Water by Four Floating Ornamental Plants. Chinese Agricultural Science Bulletin.
Hadiyanto, H. (2018). Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp. E3S Web of Conferences, 31, 03002.
Kanibawa, I. N. (2001). Mikroalga Sebagai Sumberdaya Hayati Perairan dalam Persfektif Bioteknologi. Bogor: Puslitbang-Biotek.
Kun, H., Zhi, H., & Wenjie, Z. (2010). Purification of domestic wastewater by Spirulina platensis. Guangzhou Guangdong: Environmental Pollution & Control.
Lodi, A., Binaghi, L., Solisio, C., Converti, A., & Del Borghi, M. (2003). Nitrate and phosphate removal by Spirulina platensis. Journal of industrial microbiology and biotechnology, 30(11), 656-660.
Ra, C. H., Kang, C. H., mJung, J. H., Jeong, G. T., & Kim, S. K. (2016). Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource technology, 212, 254-261.
Sumprasit, N., Wagle, N., Glanpracha, N., & Annachhatre, A. P. (2017). Biodiesel and biogas recovery from Spirulina platensis. International Biodeterioration & Biodegradation, 119, 196-204.
Suryawan, I. W., Siregar, M. J., Prajati, G., & Afifah, A. S. (2019). Integrated Ozone and Anoxic-Aerobic Activated Sludge Reactor for Endek (Balinese Textile) Wastewater Treatment. Journal of Ecological Engineering, 20(7).
Suryawan, I. W. K., & Sofiyah, E. S. (2020). Cultivation of Chlorella Sp. and Algae Mix for NH3-N and PO4-P Domestic Wastewater Removal. Civil and Environmental Science Journal, 3(1).
Utomo, T. P., Nawansih, O., & Komalasari, A. (2015). Study of determination the type of crumb rubber waste water outlet for the growth of microalgae with open ponds system. Jurnal Teknologi & Industri Hasil Pertanian, 20(2), 109-120.
Uyar, B., Kutluk, T., Uyar, E., & Kapucu, N. (2018). Growth and Lipid Production of Two Microalgae Strains in Pilot Scale (35 L) Panel Photobioreactors . Journal of Advanced Physics, 7(4), 527-529.
Valipour, A., Azizi, S., Raman, V. K., Jamshidi, S., & Hamnabard, N. (2014). The Comparative Evaluation of the Performance of Two Phytoremediation Systems for Domestic Wastewater Treatment. Journal of Environmental Science & Engineering, 56(3), 319-326.
Widianingsih, W., Hartati, R., Endrawati, H., Yudiati, E., & Iriani, V. R. (2011). Pengaruh Pengurangan Konsentrasi Nutrien Fosfat dan Nitrat Terhadap Kandungan Lipid Total Nannochloropsis oculata. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 16(1), 24-29.
DOI
https://doi.org/10.21107/rekayasa.v14i1.8882Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 I Wayan Koko Suryawan, Evi Siti Sofiyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.