Analisis Hidrodinamika di Perairan Lemong, Kabupaten Lampung Barat, Provinsi Lampung Menggunakan Piranti Surface-Water Modeling System

Andojo Wurjanto, Harman Ajiwibowo

Abstract

Pantai Lemong merupakan bagian dari Kawasan Pantai Pesisir Barat, Provinsi Lampung yang berpotensi terkena abrasi akibat gelombang dari Samudera Hindia. Rencana pengamanan pantai diperlukan untuk mencegah abrasi. Studi ini dilakukan untuk mengidentifikasi karakteristik pasang surut dan arus di perairan Lemong sebagai parameter untuk perencanaan pengaman pantai. Analisis pasang surut dan arus dilakukan dengan pemodelan numerik pada modul RMA2 dari perangkat lunak Surface-Water Modeling System (SMS). Data yang digunakan pada pemodelan adalah batimetri dan elevasi pasang surut setempat yang didapatkan dari hasil survei. Pemodelan dilakukan dengan metode online nesting dengan empat tingkat resolusi grid dengan resolusi tertinggi pada 1 x 1 km2 saat mendekat ke Perairan Pantai Lemong. Hasil pemodelan divalidasi dengan data lapangan berupa elevasi pasang surut pada dua titik di perairan dangkal dan tiga titik di perairan dalam. Hasil pemodelan menunjukkan bahwa tunggang pasang surut di wilayah Pantai Lemong mencapai 1,4 m dengan tipe mixed – dominan semi diurnal. Hasil pemodelan juga menunjukkan pola arus di Perairan Lemong yang memiliki arah dominan menuju Tenggara saat pasang dan menuju Barat Laut saat surut. Untuk pengembangan model berikutnya, disarankan agar menyertakan data kecepatan arus hasil survei lapangan dalam proses validasi sehingga kesesuaian hasil pemodelan dengan lapangan dapat lebih ditingkatkan.


Hydrodynamic Analysis Using Surface-water Modeling System in Lemong Waters,
West Lampung Regency, Lampung Province

Lemong Beach is part of the western coast of Lampung Province which is prone to abrasion caused by the Indian Ocean waves.  This study aims to identify the tidal and current characteristics in Lemong waters as a part of coastal protection planning. The tidal analysis is performed by using the RMA2 module from Surface-Water Modeling System (SMS). Data utilized in the model including bathymetry and local tidal elevations from field surveys. Modeling is conducted using an online nesting method utilizing four stages of grid resolution with 1 x 1 km2 as the highest used around the Lemong Beach Waters. The model is validated with the tidal elevations measured in two points in shallow water and three points in deep water areas. The modeling result shows that the tidal range of Lemong Beach Waters is approximately 1.4 meters as a mixed tide, dominantly in semi-diurnal. The model also shows that the current pattern in Lemong Beach Waters is dominantly moving towards southeast during flows and towards northwest during ebbs. Modeling can be further improved by including current speed from field measurement in the validation process.

Keywords

current; Lemong; RMA2; SMS; tides

References

Ajiwibowo, H., Lodiwa, K. S., Pratama, M. B., & Wurjanto, A. (2017a). Field Measurement and Numerical Modeling of Tidal Current in Larantuka Strait For Renewable Energy Utilization. International Journal of GEOMATE, 13(39), 124-131.

Ajiwibowo, H., Pratama, M. B., & Wurjanto, A. (2017b). Assessment of Tidal Current Power Potency in Kelabat Bay, Indonesia. International Journal of Engineering and Technology (IJET), 9(4), 3100-3110.

Ajiwibowo, Harman. (2018). Numerical Model of Sedimentation and Water Quality in Kerinci Lake. International Journal of GEOMATE, 15(51), 77-84.

Badan Meteorologi, Klimatologi, dan Geofisika Stasiun Meteorologi Maritim Lampung (2019). Prakiraan Cuaca Wilayah Pelayanan.

Betancur, P., Toro, B., & Gomez, A. G. (2016). Methodology for Hydrodynamic model selection, Case Study: Spatial Variability of The Thermal Structure in The Riogrande II Tropical Reservoir, Colombia. DYNA, 83(198), 154-164.

Bhattacharjee, L. & Akter, A. (2018). A Review on Sediment Transport Models of Tidal Rivers. 1st National Conference on Water Resources Engineering (NCWRE 2018).

Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N., & Ferreira, S. (2015). Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology, 238, 135–148.

EL-Sammany, M. S., & EL-Moustafa, A. M. (2011). Adaptation of Surface Water Modeling System for Sediment Transport Investigations in Lake Nasser. Nile Basin Water Science & Engineering Journal, 4(1), 58-72.

Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., & Silliman, B. R. (2011). The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change, 106(1), 7–29.

Jeyaraj, S. K., & Venugopal, V. (2016). Assessment of tidal energy potential along The Gulf of Khambhat, Gujarat, India. 2nd International Conference on Offshore Renewable Energy (CORE 2016).

Kumar, S., & Misra, A. (2017). Understanding the effects of seawall construction using a combination of analytical modelling and remote sensing techniques : Case study of Fansa, Gujarat, India. The International Journal of Ocean and Climate Systems, 8(3), 153–160.

Matsumoto K., Takanezawa T., & Ooe M. (2000). Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan. Journal of Oceanography, 56(5), 567–581.

Pilarczyk, K. W. (2012). Coastal Structures in International Perspective. In Coastal and Ocean Engineering Practice (pp. 39–93).

Rangel-buitrago, N., Atlántico, U., Williams, A., Rangel-buitrago, N., Williams, A., & Anfuso, G. (2018). Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia . A chronicle of pitfalls Ocean & Coastal Management Hard protection structures as a principal coastal erosion management strategy along th. Ocean and Coastal Management, (November 2017), 1–18. https://doi.org/10.1016/j.ocecoaman.2017.04.006

Sartika, D., Hartoko, A., & Kurniawan (2017). Analisis Data Batimetri Lapangan dan Citra Landsat 8 Oli di Perairan Selat Lepar Kabupaten Bangka Selatan. International Journal of GEOMATE, 13(39), 124-131.

Schoellhamer D. H. (2001). Influence of Salinity, Bottom Topography, and Tides on Location of Estuarine Turbidity Maxima in Northern San Francisco Bay. Proceedings in Marine Science, 3, 343-357.

Suwarsono, Supiyati, & Supardi. (2011). Zonasi Karakteristik Kecepatan Abrasi dan Rancanan Teknik Penanganan Jalan Lintas Barat Bengkulu Bagian Utara sebagai Jalur Transportasi Vitar. Makara, Teknologi, 15(1), 31–38.

Takagi, H., Pratama, M. B., Kurobe, S., Esteban, M., Aránguiz, R., & Ke, B. (2019). Analysis of generation and arrival time of landslide tsunami to Palu City due to the 2018 Sulawesi earthquake. Landslides, 16(2019), 983-991.

Tarhadi, Indrayanti, E., & Anugroho DS, A. (2014). Studi Pola Dan Karateristik Arus Laut di Perairan Kaliwungu Kendal Jawa Tengah Pada Musim Peralihan I. Jurnal Oseanografi, 3(1), 16-25.

Wisha, U. J., Husrin, S., & Prihantono, J. (2015). Hidrodinamika Perairan Teluk Banten Pada Musim Peralihan (Agustus–September). Ilmu Kelautan, 20(2), 101-112.

DOI

https://doi.org/10.21107/rekayasa.v13i2.6480

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Andojo Wurjanto, Harman Ajiwibowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.