Pengaruh Substitusi Semen dengan Limbah Pertanian Pada Beton Ringan Struktural

Dwi Nurtanto, Muhammad Fahad Kustantiyo, Nanin Meyfa Utami, Hernu Suyoso

Abstract

Study ini membandingkan kuat hancur, berat volume antara beton ringan dengan beton dengan mengganti sebagian semen (PC) dengan limbah pertanian.  Limbah pertanian yang dimaksud adalah sekam padi dan ampas tebu. Penggunaan limbah pertanian tersebut sebaga material pengganti semen dikarenakan mempunyai sifat pozzolan yang cukup tinggi.  Pemakaian limbah pertanian ini dengan membakar ampas tebu dan sekam padi dengan suhu tertentu sehingga menjadi abu. Limbah tebu diambil dari Pabrik Gula Prajekan Bondowoso, dibakar dengan suhu 8000C  selama 8 jam. Limbah Padi diambil dari limbah Pabrik Padi di Kalisat Jember, dibakar dengan suhu 8500C selama 45 menit. Kandungan silika dari hasil pembakaran tersebut masing-masing sebesar 59,5% dan 79,5% . Prosentase pengganti sebagian PC sebesar 5%, 10%, 15% dan 20%, dengan perbandingan campuran abu ampas tebu (AAT) dan abu sekam padi (ASP) adalah 1:1. Pengujian dilakukan pada umur 28 hari dengan bentuk benda uji silender berukuran 10x20 cm. Hasil kuat hancur tertinggi pada benda uji dengan subsitusi PC sebesar 5% dan berat volume yang terendah pada benda uji dengan pengantian semen sebesar 20%.

 

Effect of Cement Substitution with Agricultural Waste on Lightweight Structural Concrete

This study compares the shattering strength, volume weight between lightweight concrete and concrete by replacing part of the Portland cement (PC) with agricultural waste. The agricultural waste in question is rice husk and sugarcane bagasse. The use of agricultural waste is as a substitute for cement because it has quite high pozzolanic properties. Use of this agricultural waste by burning sugarcane bagasse and rice husk with a certain temperature so that it becomes ash. Sugarcane waste is taken from Bondowoso Prajekan Sugar Mill, burned at 8000C for 8 hours. Rice waste is taken from the rice factory waste in Kalisat Jember, burned at 8500C for 45 minutes. The silica content of the combustion products was 59.5% and 79.5%, respectively. The percentage of partial PC replacement is 5%, 10%, 15%, and 20%, with a ratio of bagasse ash (BA) to rice husk ash (RHA) is 1: 1. The test was carried out at 28 days in the form of a 10 x 20 cm slender test object. The highest yield of crushing strength in specimens with PC substitution of 5% and the lowest volume weight in specimens with cement replacement of 20%.

Keywords

lightweight structural concrete; bagasse ash; rice husk ash

References

Akasaki, J. et al. 2016. “Assessment of the Maturity Concept in Concrete with Addition of Rice Husk Ash.” Revista Ingenieria de Construccion 31(3): 175–82.

Amran, Y. H.Mugahed, Rayed Alyousef, Hisham Alabduljabbar, and Mohamed El-Zeadani. 2020. “Clean Production and Properties of Geopolymer Concrete; A Review.” Journal of Cleaner Production 251.

Badan Standardisasi Nasional-BSN. 2002. “SNI 03-3449 Tata Cara Rencana Pembuatan Campuran Beton Ringan Dengan Agregat Ringan.”

—. 2013. SNI 2847: Persyaratan Beton Struktural Untuk Bangunan Gedung. Jakarta, Indonesia: SNI.

Bahurudeen, A, Deepak Kanraj, V Gokul Dev, and Manu Santhanam. 2015. “Performance Evaluation of Sugarcane Bagasse Ash Blended Cement in Concrete.” Cement and Concrete Composites 59: 77–88. http://www.sciencedirect.com/science/article/pii/S0958946515000347.

Bajpai, Rishabh et al. 2020. “Environmental Impact Assessment of Fly Ash and Silica Fume Based Geopolymer Concrete.” Journal of Cleaner Production 254: 120147. https://www.sciencedirect.com/science/article/pii/S0959652620301943.

Barbosa, M. B. et al. 2013. “Impact Strength and Abrasion Resistance of High Strength Concrete with Rice Husk Ash and Rubber Tires.” Revista IBRACON de Estruturas e Materiais 6(5): 811–20.

Bayuaji, Ridho. 2014. “Studi Kuat Tekan Beton Porus Sebagai Material Alternatif Batu Bata Dengan Metode Taguchi.” Jurnal Aplikasi Teknik Sipil 12(1): 57.

Fairbairn, Eduardo M R et al. 2010. “Cement Replacement by Sugar Cane Bagasse Ash: CO2 Emissions Reduction and Potential for Carbon Credits.” Journal of Environmental Management 91(9): 1864–71. http://www.sciencedirect.com/science/article/pii/S030147971000109X.

Gupta, Sugandha, Gaurav Chandrakar, and Fly Ash. 2017. “Experimental Studies on Fly Ash Based Geopolymer Concrete without Portland Cement-An Eco Friendly Construction.” International Journal of Engineering Science and Computing 7(5): 11514–20.

Hassan, Amer, Mohammed Arif, and M. Shariq. 2019. “Use of Geopolymer Concrete for a Cleaner and Sustainable Environment – A Review of Mechanical Properties and Microstructure.” Journal of Cleaner Production 223: 704–28. https://doi.org/10.1016/j.jclepro.2019.03.051.

Maufida, Amalia, Dwi Nurtanto, and Ahmad Hasanuddin. 2016. PENGARUH PENGGUNAAN ABU SEKAM PADI DAN ABU AMPAS TEBU SEBAGAI SUBTITUSI SEMEN TERHADAP KUAT TEKAN BETON DENGAN PERLAKUAN PERENDAMAN AIR TAWAR DAN AIR LAUT.

Nuaklong, Peem et al. 2020. “Influence of Rice Husk Ash on Mechanical Properties and Fire Resistance of Recycled Aggregate High-Calcium Fly Ash Geopolymer Concrete.” Journal of Cleaner Production 252.

Nugroho, Ananto, Arif Rahman Saleh, Jl Rawamangun Muka, and Jakarta Timur Surel. 2017. “Utilization of Baggase Ash on Lightweight Foamed Concrete.” Jurnal Permukiman 12(1): 20–24.

Nurtanto, Dwi. 2017. “Kontribusi Kuat Lentur Polikarbonat Pada Pelat Beton Berpori.” Jurnal Rekayasa Sipil dan Lingkungan 1(4): 1–6.

Pasupathy, Kirubajiny et al. 2017. “Durability of Low‑calcium Fly Ash Based Geopolymer Concrete Culvert in a Saline Environment.” Cement and Concrete Research 100(January): 297–310. http://dx.doi.org/10.1016/j.cemconres.2017.07.010.

Raka, I Gusti Putu, Tavio, and Dionisius Tripriyono. 2010. “Beton Agregat Ringan Dengan Substitusi Parsial Batu Apung Sebagi Agregat Kasar.” Konferensi Nasional Teknik Sipil 4 (KoNTekS 4) 4(KoNTekS 4): 173–80.

Reza, Bahareh et al. 2013. “Environmental and Economic Aspects of Production and Utilization of RDF as Alternative Fuel in Cement Plants: A Case Study of Metro Vancouver Waste Management.” Resources, Conservation and Recycling 81: 105–114.

Soeswanto, Bambang, and Ninik Lintang. 2016. “Pemanfaatan Limbah Abu Sekam Padi Menjadi Natrium Silikat.” Jurnal Fluida 7(1): 18–22.

Suhirkam, Djaka, and A Latief. 2013. “Pengaruh Penggatian Sebagian Semen Dengan Abu Sekam Padi Terhadap Kekuatan Beton K-400.” 6: 3–8. https://jurnal.polsri.ac.id/index.php/pilar/article/view/417%0D.

Suseno, Hendro. 2013. “Penggunaan Batuan Skoria Dari Gunung Kelud Blitar Sebagai Agregat Kasar Pada Beton Ringan Struktural.” Jurnal Rekayasa Sipil 7(2): 149–56.

Torres-Carrasco, M., and F. Puertas. 2017. “Alkaline Activation of Different Aluminosilicates as an Alternative to Portland Cement: Alkali Activated Cements or Geopolymers.” Revista Ingenieria de Construccion 32(2): 5–12.

Yulianto, Faisal Estu, and M. Hazin Mukti. 2016. “Pengaruh Penambahan Abu Sekam Padi Pada Kuat Tekan Beton Campuran 1 Pc : 2 Ps : 3 Kr.” ResearchGate.

DOI

https://doi.org/10.21107/rekayasa.v13i2.6246

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Dwi Nurtanto, Muhammad Fahad Kustantiyo, Nanin Meyfa Utami, Hernu Suyoso

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.