Pengaruh Proses Blending dan Ultrasonikasi terhadap Struktur Morfologi Ekstrak Serat Limbah Batang Kelapa Sawit untuk Bahan Baku Bioplastik (Selulosa Asetat)

Lestari Hetalesi Saputri, Romi Sukmawan

Abstract

Batang kelapa sawit (BKS) hasil dari kegiatan replanting merupakan limbah bagi lingkungan apabila dibiarkan begitu saja  di areal perkebunan. Padahal limbah ini mengandung selulosa cukup tinggi yang senyawa turunannya dapat diolah lebih lanjut, salah satunya menjadi bahan baku bioplastik yaitu selulosa asetat. Selulosa dapat diisolasi melalui tahapan proses chemis (ekstraksi) dan mekanis (misalnya blending dan ultrasonikasi). Penelitian ini bertujuan untuk mengetahui pengaruh masing-masing tahapan proses tersebut, terutama proses blending dan ultrasonikasi terhadap perubahan sifat morfologi serat limbah BKS. Proses ekstraksi menggunakan NaOH dan H2O2 5%, proses blending menggunakan PHILIPS HR2096 kecepatan 21.000 rpm dan proses sonikasi menggunakan ultrasonic cell crusher. Hasil analisa FTIR setelah proses ekstraksi menunjukkan bahwa terdapat adanya ikatan O-H, C-H dan C-O pada puncak gelombang 3410,15; 2908,65 dan 1033,85 cm-1 yang merupakan ikatan penyusun gugus utama senyawa selulosa. Hasil XRD memperlihatkan terjadi penurunan derajat kristalin sebelum dan setelah proses blending yaitu sebesar 18,26%. Namun setelah proses ultrasonikasi terjadi kenaikan kembali nilai derajat kristalin dari 21,09% menjadi 30%. Karakterisasi morfologi menunjukkan bahwa proses blending dapat memisahkan struktur amorf dari serat selulosa dan proses ultrasonikasi dapat memecah serat selulosa menjadi lebih kecil. Dari penelitian ini dapat disimpulkan bahwa proses blending dan ultrasonikasi mempengaruhi perubahan struktur dan morfologi serat selulosa hasil ekstrak limbah BKS, namun penelitian ini masih perlu dikembangkan untuk mengetahui kondisi proses yang tepat untuk menghasilkan serat nanoselulosa yang lebih banyak. Kondisi proses tersebut terutama yang berkaitan dengan kecepatan putar dan waktu tinggal selama proses.

The Effect of Blending and Ultrasonication Processes on The Morphological Structure of Palm Oil Trunk Extracts for Raw Material of Bioplastic (Cellulose Acetate)

Oil Palm Trunks (OPT) is waste generated from replanting activities that if left in the environment can pollute the plantation area. However, this waste has high cellulose content including its derivative compounds which can be further processed into new products, one of which is a bioplastic raw material, cellulose acetate. Cellulose can be isolated through two processes, which consist of chemical (by extraction) and mechanical (by blending and ultrasonication) processes. This research studies the effects of each stage process, especially the main effects of the blending and ultrasonication processes on the morphological characteristics of palm oil trunk wastes. The extraction process uses NaOH 5% and H2O2 5%, the blending uses PHILIPS HR 2096 with a speed of 21,000 rpm and the sonication process uses an ultrasonic cell crusher. The results of FTIR analysis after the extraction process showed O-H, C-H and C-O bonds at the wave peak of 3410.15; 2908.65 and 1033.85 cm-1, which are the main constituent groups of cellulose compounds. The results of XRD analysis showed a decrease in the degree of crystalline of 18.26% after the blending process. However, after the ultrasonication process, the degree of crystalline increased from 21.09% to 30%. Morphological characterization shows that blending can separate the amorphous structure of cellulose fibers and the ultrasonication process can break down cellulose fibers into smaller sizes. This research still needs to be developed in determining the exact operating conditions to produce nanocellulose fibers, especially those related to rotational speed and residence time during the process.

Keywords: The degree of crystalline, extraction, nanocellulose, cellulose


Keywords

Derajat kristalin; Ekstraksi; Nanoselulosa; Selulosa

References

Abraham, E., Deepa, B. L. A., Jacob, M., Thomas, S., Cvelbar, U., et al. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydrate Polimers, 86, 1468-1475.

Agro. (2017). 1,5 Juta Ha Kebun Petani Sawit Wajib Direplanting. Agrofarm.

Direktorat Jenderal Perkebunan, Statistik Perkebunan Indonesia 2015-2017 Kelapa Sawit.

Clayden, J., Greeves, N., & Warren, S. (2012). Organic chemistry. Oxford University Press.

Galati, C. C., 1989, Motion Control Industries, Inc. US Patent 4,811,908.

Gemili, S., Yemeniciog, A., & Altinkaya, S. A. (2010). Development of antioxidant food packaging materials with controlled release properties. J. of Food Engineering, 96, 325– 332. doi:10.1016/j.jfoodeng.2009.08.020

Herawan, T., & Rivani, M. (2010). Produksi Aseton-Butanol-Etanol dari Hidrolisat Tandan Kosong Kelapa Sawit. Laporan Pnelitian Kerjasama PPKS-PTPN IV, 16.

Husni, D. A. P., Rahim, E. A., Rusian. (2018). Pembuatan membran selulosa asetat dari selulosa pelepah pohon pisang. Kovalen, 4(1), 41-52.

Kamal, A. H., F. M., Abd-Elrahim B., Lotfy S. (2014). Characterization and Some Properties Of Cellulose Acetate-Co-Polyethylene Oxide Blends prepared by the use of gamma irradiation. Journal of Radiation Research and Applied Sciences. 7, 146-153.

Li, J., Wei, X., Wang, Q. (2012). Homogeneous isolation of nanocellulose from sugarcare bagasse by high pressure homogenization. Carbohydrate Polmers, 90(4), 1069-1613.

Li, W., Yue, J., Liu, S. (2012). Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrasonics Sonochemistr, 19, 479-485.

Marchessault, R. H., P. R. Sundarajan. (1983). Cellulose in : Aspinal, G. O. (editor) the polysacaride. London : Academic Press, Inc.

Moore A. (2013). Draft: Trap development experiment. Research in support of the Guam coconut rhinoceros beetle eradication project. Cooperative extension service, University of Guam.

Nakagaito, A. N., Ikenaga, K., dan Takagi, H. Cellulose nanofiber extraction from grass by a modified kitchen blender. Mod. Phys. Lett. B, 29, 06-07.

Pratiwi, R., Rhayu, D., Barliana, M. I. (2016). Pemanfaatan Selulosa dari Limbah Jerami Padi (Oryza sativa) sebagai Bahan Bioplastik, 3(3).

Robertson, R. M., Thomas, W. C., Suthar, J. N., & Brown, D. M. (2012). Accelerated degradation of cellulose acetate cigarette filters using controlled-release acid catalysis. Green Chemistry, 14(8), 2266–2272.

Sukmawan R, Saputri L. H, Rochmadi, Rochardjo H. S. B. (2019). The effects of the blending condition on the morphology, crystallinity, and thermal stability of cellulose microfibers obtained from bagasse. Indonesian Journal of Chemistry, 19 (1), 165-175.

Sundari, M.T., Atmakuru, R. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed watwer hyacinth: Eichhornia crassipers. Carbohydrate polimers, 87 (2). DOI:10.1016/j.carbpol.2011.09.076.

Triapriani. (2016). Pembuatan Nanoselulosa Dari Tandan Kosong Sawit Dengan Metode Hidrolisis Asam. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung : Bandar Lampung.

Poletto, M., Júnior, H. L. O., and Zattera, A. J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7 (9), 6105-6119. https://doi.org/10.3390/ma7096105.

Uetani, K. dan Yano, H. (2011). Nanofibrillation of wood pulp using a high-speed blender, Biomacromolecules, 12 (2), 348–353, Feb 2011.

Zain, N. F. M., Yusop, S. M., and Ahmad, I. 2014. Preparation and karacterization of cellulose and nanocellulose from pamelo (Citrus grandis) Albedo. Jornal of Nuttrition and Food Sciences, 5(1), 1-4.

DOI

https://doi.org/10.21107/rekayasa.v13i1.6180

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Lestari Hetalesi Saputri, Romi Sukmawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.