Modeling of conventional single slope solar still (CS4) with phase change material (PCM)

Irfan Santosa, Muhamad Dwi Septiyanto, Sholikhin Andriyanto, Eko Prasetya Budiana Budiana, Syamsul Hadi, Agung Tri Wijayanta

Abstract

This study investigates the capability of two-dimensional Computational Fluid Dynamics (CFD) simulation to estimate the temperature distribution pattern and velocity contours in a single slope solar still that uses soybean wax as a phase change material (PCM). A triangular mesh model is employed in the simulation. The basin geometry uses a mesh with 20,402 nodes and 10,000 elements, while the PCM geometry uses a mesh consisting of 9,272 nodes and 4,500 elements. This study introduces an equation developed based on the Dunkle, Bulk Motion, and Chilton-Colburn analogies to estimate the Nusselt number in the solar still. The water temperature (Tw), the inner surface temperature of the glass cover (Tg), and the PCM temperature (Tpcm) are determined experimentally, whereas the performance of the conventional solar distillation system is predicted theoretically using the experimental results. The results demonstrate that the use of soybean wax as a PCM positively influences the temperature distribution and streamline patterns within the single slope solar still. In the morning, the temperature and velocity distributions reveal that the isotherm lines are parallel to the lower right segment of the cavity, indicating that conduction is the dominant heat transfer mechanism. As the day progresses, the streamline pattern inside the cavity expands and becomes more curved, suggesting an increased influence of the convection process. These findings are consistent with the CFD analysis results, which show high accuracy in predicting Nusselt numbers. Furthermore, the comparison between daily distilled water productivity from experimental measurements and theoretical predictions shows good agreement.

Keywords

CFD simulation, solar still, phase change, Nusselt numbers

Full Text:

PDF

References

Alwan, N. T., Majeed, M. H., Khudhur, I. M., Shcheklein, S. E., Ali, O. M., Yaqoob, S. J., & Alayi, R. (2022). Assessment of the performance of solar water heater: an experimental and theoretical investigation. International Journal of Low-Carbon Technologies, 17(April), 528–539. https://doi.org/10.1093/ijlct/ctac032

Bansal, K., Kumar, R., Krishna, S., Kumar, P., & Sharma, A. (2022). Materials Today : Proceedings Validation and CFD modeling of solar still with nanoparticle coating on absorber plate. Materials Today: Proceedings, 63, 673–679. https://doi.org/10.1016/j.matpr.2022.04.744

Belessiotis, Vassilis. Kalogirou, Soteris. Delyannis, E. (2016). Thermal Solar Desalination Thermal Solar Methods and Systems. Joe Hayton Elsevier. https://doi.org/10.1016/B978-0-12-809656-7.00007-6

Cheng, W. L., Huo, Y. K., & Nian, Y. Le. (2019). Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation. Desalination, 455(January), 89–99. https://doi.org/10.1016/j.desal.2019.01.007

Clark, J. A. (1990). The steady-state performance of a solar still. Solar Energy, 44(1), 43–49. https://doi.org/10.1016/0038-092X(90)90025-8

Dunkle, R. (1961). Solar water distillation: the roof type still and the multiple effect diffusor. Int. Dev. in Heat Transfer, V, 9. https://doi.org/2158901

El-Sebaii, A. A., Al-Ghamdi, A. A., Al-Hazmi, F. S., & Faidah, A. S. (2009). Thermal performance of a single basin solar still with PCM as a storage medium. Applied Energy, 86(7–8), 1187–1195. https://doi.org/10.1016/j.apenergy.2008.10.014

G.N.Tiwari & Lovedeep Sahota. (n.d.). Advanced Solar-Distillation Systems. Springer.

Ghougali, M., Kabeel, A. E., El, M., Attia, H., Elazab, M. A., & Abdelgaied, M. (2024). Optimal orientation of efficacy metal fins to enhanced freshwater generation in solar distillers: An experimtental study. Desalination and Water Treatment, 319(April), 100479. https://doi.org/10.1016/j.dwt.2024.100479

Gnanavel, C., Saravanan, R., & Chandrasekaran, M. (2021). Materials Today : Proceedings CFD analysis of solar still with PCM. Materials Today: Proceedings, 37, 694–700. https://doi.org/10.1016/j.matpr.2020.05.638

Jahanpanah, M., Sadatinejad, S. J., Kasaeian, A., Jahangir, M. H., & Sarrafha, H. (2021). Experimental investigation of the effects of low-temperature phase change material on single-slope solar still. Desalination, 499(October 2020), 114799. https://doi.org/10.1016/j.desal.2020.114799

Jeon, J., Hun, J., Wi, S., Yang, S., Sik, Y., & Kim, S. (2019). Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials. Environmental Research, 172(December 2018), 637–648. https://doi.org/10.1016/j.envres.2019.01.058

Kabeel, A. E., & El-Said, E. M. S. (2015). Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review. Engineering Science and Technology, an International Journal, 18(2), 294–301. https://doi.org/10.1016/j.jestch.2014.12.003

Ouled Saad, F., Mankai, S., Madiouli, J., Chemkhi, S., Shigidi, I., & Khan, M. I. (2024). Effect of phase change materials melting temperature on improving single slope solar still productivity. Journal of Energy Storage, 97(PB), 112927. https://doi.org/10.1016/j.est.2024.112927

Owolabi, L., Chintua, C., Kareem, M. W., Arogundade, A. I., Irshad, K., Islam, S., Oladosu, K. O., & Elfaghi, A. M. (2023). Experimental investigation of double slope solar still integrated with PCM nanoadditives microencapsulated thermal energy storage. Desalination, 553(August 2022), 116477. https://doi.org/10.1016/j.desal.2023.116477

Prakash, O., Ahmad, A., Kumar, A., Mozammil Hasnain, S. M., & Kumar, G. (2022). Comprehensive analysis of design software application in solar distillation units. Materials Science for Energy Technologies, 5, 171–180. https://doi.org/10.1016/j.mset.2022.01.005

Rahbar, N., Esfahani, J. A., & Fotouhi-Bafghi, E. (2015). Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still - CFD simulation and theoretical analysis. Solar Energy, 113, 313–323. https://doi.org/10.1016/j.solener.2014.12.032

Rajaseenivasan, T., & Srithar, K. (2016). Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. DES, 380, 66–74. https://doi.org/10.1016/j.desal.2015.11.025

Sadewa, D. M., Septiyanto, M. D., Yaningsih, I., Budiana, E. P., Hadi, S., & Prasetyo, A. (2024). Performance Testing of Single Slope Solar Still by Using Soybean Wax as PCM BT - Proceedings of the 9th International Conference and Exhibition on Sustainable Energy and Advanced Materials (M. A. Salim, N. S. Khashi’ie, K. W. Chew, & C. Photong (eds.); pp. 307–311). Springer Nature Singapore.

Saleem, K. B., Ghachem, K., Koufi, L., & Kolsi, L. (2021). Analysis of Double-diffusive natural convection in a solar distiller embedded with PCM and cooled with external water stream. Journal of the Taiwan Institute of Chemical Engineers, 126, 67–79. https://doi.org/10.1016/j.jtice.2021.06.042

Saleem, K. B., Koufi, L., Alshara, A. K., & Kolsi, L. (2020). Double-diffusive natural convection in a solar distiller with external fluid stream cooling. International Journal of Mechanical Sciences, 181(May). https://doi.org/10.1016/j.ijmecsci.2020.105728

Sarhaddi, F., Farshchi Tabrizi, F., Aghaei Zoori, H., & Mousavi, S. A. H. S. (2017). Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Conversion and Management, 133, 97–109. https://doi.org/10.1016/j.enconman.2016.11.044

Shalaby, S. M., El-Bialy, E., & El-Sebaii, A. A. (2016). An experimental investigation of a v-corrugated absorber single-basin solar still using PCM. Desalination, 398, 247–255. https://doi.org/10.1016/j.desal.2016.07.042

Shawaqfeh, A. T., & Farid, M. M. (1995). New development in the theory of heat and mass transfer in solar stills. Solar Energy, 55(6), 527–535. https://doi.org/10.1016/0038-092X(95)00069-4

Singh, V. K., & Kumar, D. (2024). An experimental investigation and thermo-economic performance analysis of solar desalination system by using nano-enhanced PCM. Materials Today Sustainability, 27(June), 100884. https://doi.org/10.1016/j.mtsust.2024.100884

Taylor, P., Rahbar, N., & Esfahani, J. A. (2012). Desalination and Water Treatment Estimation of convective heat transfer coefficient in a single-slope solar still : a numerical study. January 2014, 37–41. https://doi.org/10.1080/19443994.2012.720442

Tiwari, G. N., Singh, H. N., & Tripathi, R. (2003). Present status of solar distillation. Solar Energy, 75(5), 367–373. https://doi.org/https://doi.org/10.1016/j.solener.2003.07.005

Trisnadewi, T., Kusrini, E., Marta, D., & Putra, N. (2021). Experimental analysis of natural wax as phase change material by thermal cycling test using thermoelectric system. Journal of Energy Storage, 40(May), 102703. https://doi.org/10.1016/j.est.2021.102703

Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2008). Single basin solar still with fin for enhancing productivity. 49, 2602–2608. https://doi.org/10.1016/j.enconman.2008.05.010

Yoo, J., Chang, S. J., Wi, S., & Kim, S. (2019). Chemosphere Spent coffee grounds as supporting materials to produce bio- composite PCM with natural waxes. Chemosphere, 235, 626–635. https://doi.org/10.1016/j.chemosphere.2019.06.195

DOI

https://doi.org/10.21107/rekayasa.v18i1.29386

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 IRFAN SANTOSA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.