Perancangan Alat Pembaca Aksara Jawa Pada Prasasti Dengan Metode YOLO

Achmad Ubaidillah, Achmad Fiqhi Ibadillah, Ulfa Lailatul Riski, Rahmad Fajar Sidik, S. Ida Kholida

Abstract

Understanding the history of a nation is very important. Inscriptions are an important historical relic for the nation. Inscriptions provide information and learning for future generations. Inscriptions are usually made of stone or metal. There are several problems in reading the inscription, such as smearing which affects the readability of the writing, erosion of the smear or other things which reduce the legibility of the inscription. On the other hand, Javanese script is a way of writing Javanese instead of using Latin script. It is quite difficult to understand and memorize Javanese script because of its shape and rarely used. Archaeologists in Indonesia generally use fairly simple tools to read inscriptions so it takes a long time. This adds complexity to the process of documenting existing inscriptions. Therefore, in this research a tool was designed to read and translate inscriptions using the principle of light reflection. This is the main contribution and novelty of this research. The data that has been obtained is then processed using image processing and interpreted from Javanese to Indonesian. The method used is YOLO (You Only Look Once) to process image processing. Adding light around the inscription using LED strip lights. From the experiment, the success rate was 88.5% and the failure rate was 11.5%. The intensity of the light and the accuracy of the angle of incidence of the light greatly influence the level of success in reading the writing on the inscription.

Keywords

reader, inscription, Javanese Script, image processing, YOLO

References

Abdul Robby, G., Tandra, A., Susanto, I., Harefa, J., & Chowanda, A. (2019). Implementation of optical character recognition using tesseract with the javanese script target in android application. Procedia Computer Science, 157, 499–505. https://doi.org/10.1016/j.procs.2019.09.006

Aini, Q., Lutfiani, N., Kusumah, H., & Zahran, M. S. (2021). Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo. CESS (Journal of Computer Engineering, System and Science), 6(2), 192. https://doi.org/10.24114/cess.v6i2.25840

Al-Jallad, A. (2020). Notes on the language of the Hismaic Inscriptions and a re-reading of Line 4 of the Madaba Hismaic Inscription. Journal of the Royal Asiatic Society, 30(3), 561–569. https://doi.org/10.1017/S1356186319000476

Aly, G. H., Marey, M., El-Sayed, S. A., & Tolba, M. F. (2021). YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms. Computer Methods and Programs in Biomedicine, 200, 105823. https://doi.org/10.1016/j.cmpb.2020.105823

Ariani, D. (2020). Pengembangan Media Karsawa (Kartu Aksara Jawa) Untuk Pembelajaran Menulis Aksara Jawa Di Kelas Iii Sekolah Dasar. Jpgsd, 08(01), 154–164.

Chen, W., Huang, H., Peng, S., Zhou, C., & Zhang, C. (2021). YOLO-face: a real-time face detector. Visual Computer, 37(4), 805–813. https://doi.org/10.1007/s00371-020-01831-7

Darme, M., & Andhifani, W. R. (2023). Masuk Dan Berkembang Agama Hindu Dalam Pengaruhnya Terhadap Sistem Kepercayaan Masyarakat Nusantara. Danadyaksa Historica, 3(1), 1. https://doi.org/10.32502/jdh.v3i1.6045

Dewantoro, N., Fernando, P. N., & Tan, S. (2020). YOLO Algorithm Accuracy Analysis in Detecting Amount of Vehicles at the Intersection. IOP Conference Series: Earth and Environmental Science, 426(1). https://doi.org/10.1088/1755-1315/426/1/012164

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimedia Tools and Applications, 82(6), 9243–9275. https://doi.org/10.1007/s11042-022-13644-y

Fakhruddin, D., Sachari, A., & Haswanto, N. (2019). Pengembangan Desain Informasi dan Pembelajaran Aksara Jawa melalui Media Website. ANDHARUPA: Jurnal Desain Komunikasi Visual & Multimedia, 5(01), 1–23. https://doi.org/10.33633/andharupa.v5i01.1990

Hawkins, J. D., & Weeden, M. (2021). The New Inscription from Türkmenkarahöyük and its Historical Context. Altorientalische Forschungen, 48(2), 384–400. https://doi.org/10.1515/aofo-2021-0015

Huang, S., He, Y., & Chen, X. A. (2021). M-YOLO: A Nighttime Vehicle Detection Method Combining Mobilenet v2 and YOLO v3. Journal of Physics: Conference Series, 1883(1). https://doi.org/10.1088/1742-6596/1883/1/012094

Indah Puji Astuti, Ega Feri Romawati, & Ida Widaningrum. (2020). Rancang Bangun Aplikasi Mobile Pengenalan Huruf Jawa (Aksara Jawa) Berbasis Android. Jurnal CoSciTech (Computer Science and Information Technology), 1(2), 93–100. https://doi.org/10.37859/coscitech.v1i2.2185

Maier, A., Syben, C., Lasser, T., & Riess, C. (2019). A gentle introduction to deep learning in medical image processing. Zeitschrift Fur Medizinische Physik, 29(2), 86–101. https://doi.org/10.1016/j.zemedi.2018.12.003

Marzali, A. (2023). Sejarah awal kerajaan melayu di jambi. Jurnal Pengajian Melayu, 34(2), 65–80. https://doi.org/10.22452/jomas.vol34no2.5

Nafis Alfarizi, D., Agung Pangestu, R., Aditya, D., Adi Setiawan, M., & Rosyani, P. (2023). Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis. Jurnal Artificial Inteligent Dan Sistem Penunjang Keputusan, 1(1), 54–63. https://jurnalmahasiswa.com/index.php/aidanspk

Prihandi, I., Ranggadara, I., Dwiasnati, S., Sari, Y. S., & Suhendra. (2020). Implementation of Backpropagation Method for Identified Javanese Scripts. Journal of Physics: Conference Series, 1477(3). https://doi.org/10.1088/1742-6596/1477/3/032020

Rahma, L., Syaputra, H., Mirza, A. H., & Purnamasari, S. D. (2021). Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once). Jurnal Nasional Ilmu Komputer, 2(3), 213–232. https://doi.org/10.47747/jurnalnik.v2i3.534

Rasyidi, M. A., Bariyah, T., Riskajaya, Y. I., & Septyani, A. D. (2021). Classification of handwritten javanese script using random forest algorithm. Bulletin of Electrical Engineering and Informatics, 10(3), 1308–1315. https://doi.org/10.11591/eei.v10i3.3036

Saputro, N. D., Romadhani, T., & Dewanto, F. M. (2020). Designing Android Based Education Game Aksara Jawa Using Shuffle Random Algorithm. IOP Conference Series: Materials Science and Engineering, 835(1). https://doi.org/10.1088/1757-899X/835/1/012040

Sarip, M. (2020). Kajian Etimologis Kerajaan (Kutai) Martapura di Muara Kaman, Kalimantan Timur. Yupa: Historical Studies Journal, 4(2), 50–61. https://doi.org/10.30872/yupa.v4i2.264

Sumit, S. S., Watada, J., Roy, A., & Rambli, D. R. A. (2020). In object detection deep learning methods, YOLO shows supremum to Mask R-CNN. Journal of Physics: Conference Series, 1529(4). https://doi.org/10.1088/1742-6596/1529/4/042086

Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C. H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202(August), 116137. https://doi.org/10.1016/j.neuroimage.2019.116137

Wang, N., Sun, Q., Jiao, Q., & Ma, J. (2020). Oracle bone inscriptions detection in rubbings based on deep learning. 2020(1), 1671–1674. https://doi.org/10.1109/ITAIC49862.2020.9339132

Wang, N., Zhao, Z., & Jiao, Q. (2020). Oracle bone inscriptions components analysis based on image similarity. 2020, 1666–1670. https://doi.org/10.1109/ITAIC49862.2020.9338812

Zhang, Z., Lu, X., Cao, G., Yang, Y., Jiao, L., & Liu, F. (2020). ViT-YOLO : Transformer-Based YOLO for Object Detection. 2799–2808.

DOI

https://doi.org/10.21107/rekayasa.v18i2.28173

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Achmad Ubaidillah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.