Plastic Waste Identification using ResNet-50: A Deep Learning Approach

Akmal Nusa Bakti, Nabila Husna Shabrina

Abstract

Plastic waste is a significant environmental concern, constituting a major portion of the global waste stream. Improper disposal and accumulation have led to severe environmental challenges, including pollution, harm to marine life, and contributions to climate change. Effective waste management strategies are essential to mitigate these issues. However, manual sorting methods are both time-consuming and costly, requiring substantial human effort and financial investment. To address these limitations, automated solutions utilizing advanced technologies like artificial intelligence have gained increasing attention. Deep learning-based method can automatically identify and classify various types of plastic waste using computer-captured image patterns. This study explores the application of ResNet50, a state-of-the-art deep learning model, for the classification of plastic and non-plastic waste. A robust dataset comprising 4,000 diverse images of waste materials was employed for model training and validation. ResNet50, with its advanced architecture designed for image recognition tasks, demonstrated exceptional performance, achieving an accuracy, precision, recall, and F1-score of 0.99. These results highlight the model’s ability to precisely and reliably differentiate between plastic and non-plastic waste categories. The findings of this research underscore the potential of deep learning-based approaches in revolutionizing waste management practices. By leveraging automated classification methods, waste sorting can become significantly faster, more accurate, and cost-effective. This has far-reaching implications reducing environmental harm and fostering a more sustainable future. The results demonstrate that integrating AI technologies into waste management systems can lead to efficient and environmentally friendly solutions for tackling plastic waste challenges.

Keywords

convolutional neural networks, plastic waste, Resnet-50, waste identification

Full Text:

PDF

References

Ahdita, F. (2019). Identifikasi Jenis Sampah Melalui Convolutional Neural Network [Dataset]. Github. https://github.com/fannyahdita/DSA_tugas_akhir

Alsabt, R., Alkhaldi, W., Adenle, Y. A., & Alshuwaikhat, H. M. (2024). Optimizing waste management strategies through artificial intelligence and machine learning—An economic and environmental impact study. Cleaner Waste Systems, 8, 100158. https://doi.org/10.1016/j.clwas.2024.100158

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

Cheema, S. M., Hannan, A., & Pires, I. M. (2022). Smart Waste Management and Classification Systems Using Cutting Edge Approach. Sustainability, 14(16), 10226. https://doi.org/10.3390/su141610226

Dafid, A., Siwindarto, P., & Siswojo, B. (2021). Kinerja Pendekatan Convolutional Neural Network dan Dense Network dalam Klasifikasi Citra Malaria. Rekayasa, 14(2), 222–229. https://doi.org/10.21107/rekayasa.v14i2.10735

Fadhullah, W., Imran, N. I. N., Ismail, S. N. S., Jaafar, M. H., & Abdullah, H. (2022). Household solid waste management practices and perceptions among residents in the East Coast of Malaysia. BMC Public Health, 22(1), 1. https://doi.org/10.1186/s12889-021-12274-7

Fang, B., Yu, J., Chen, Z., Osman, A. I., Farghali, M., Ihara, I., Hamza, E. H., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence for waste management in smart cities: A review. Environmental Chemistry Letters, 21(4), 1959–1989. https://doi.org/10.1007/s10311-023-01604-3

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia. (2024, January). Capaian Kinerja Pengelolaan Sampah. Capaian Kinerja Pengelolaan Sampah

Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization (No. arXiv:1412.6980). arXiv. http://arxiv.org/abs/1412.6980

Kumsetty, N. V., Bhat Nekkare, A., S., S. K., & Kumar M., A. (2022). TrashBox: Trash Detection and Classification using Quantum Transfer Learning. 2022 31st Conference of Open Innovations Association (FRUCT), 125–130. https://doi.org/10.23919/FRUCT54823.2022.9770922

Maalouf, A., & Mavropoulos, A. (2023). Re-assessing global municipal solid waste generation. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41(4), 936–947. https://doi.org/10.1177/0734242X221074116

Malik, M., Sharma, S., Uddin, M., Chen, C.-L., Wu, C.-M., Soni, P., & Chaudhary, S. (2022). Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models. Sustainability, 14(12), 7222. https://doi.org/10.3390/su14127222

Middya, A. I., Chattopadhyay, D., & Roy, S. (2021). Garbage Detection and Classification using Faster-RCNN with Inception-V2. 2021 IEEE 18th India Council International Conference (INDICON), 1–6. https://doi.org/10.1109/INDICON52576.2021.9691547

Musa, P., Anam, W. K., Musa, S. B., Aryunani, W., Senjaya, R., & Sularsih, P. (2023). Pembelajaran Mendalam Pengklasifikasi Ekspresi Wajah Manusia dengan Model Arsitektur Xception pada Metode Convolutional Neural Networ. Rekayasa, 16(1), 65–73. https://doi.org/10.21107/rekayasa.v16i1.16974

Ozkaya, U., & Seyfi, L. (2019). Fine-Tuning Models Comparisons on Garbage Classification for Recyclability (No. arXiv:1908.04393). arXiv. http://arxiv.org/abs/1908.04393

Ramos, E., Lopes, A. G., & Mendonça, F. (2024). Application of Machine Learning in Plastic Waste Detection and Classification: A Systematic Review. Processes, 12(8), 1632. https://doi.org/10.3390/pr12081632

Sami, K. N., Amin, Z. M. A., & Hassan, R. (2020). Waste Management Using Machine Learning and Deep Learning Algorithms. International Journal on Perceptive and Cognitive Computing, 6(2), 97–106. https://doi.org/10.31436/ijpcc.v6i2.165

Sari, N., Rahmayanti, H., & Sumargo, B. (2023). Pemilihan Prioritas Pengolahan Sampah dalam Perspektif Pengetahuan Masyarakat Untuk Reduksi Emisi. Rekayasa, 16(3), 345–350. https://doi.org/10.21107/rekayasa.v16i3.22643

Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2(6), 420. https://doi.org/10.1007/s42979-021-00815-1

Serezhkin, A. (2020). Drinking Waste Classification [Dataset]. Kaggle. https://www.kaggle.com/datasets/arkadiyhacks/drinking-waste-classification

Shabrina, N. H., & Brian, A. (2023). A Comparative Analysis of Pre-trained Deep Neural Networks for Mango Leaves Pests and Diseases Identification. ICIC Express Letters, Part B : Applications, 14(11), 1207–1215. https://doi.org/10.24507/icicelb.14.11.1207

Shabrina, N. H., Lika, R. A., & Indarti, S. (2023). Deep learning models for automatic identification of plant-parasitic nematode. Artificial Intelligence in Agriculture, 7, 1–12. https://doi.org/10.1016/j.aiia.2022.12.002

Sharma, P., & Vaid, U. (2021). Emerging role of artificial intelligence in waste management practices. IOP Conference Series: Earth and Environmental Science, 889(1), 012047. https://doi.org/10.1088/1755-1315/889/1/012047

Simonyan, K., & Zisserman, A. (2015, April 10). Very Deep Convolutional Networks for Large-Scale Image Recognition. Proceeding of The 3rd International Conference on Learning Representations (ICLR2015). 3rd International Conference on Learning Representations, San Diego, CA, USA. http://arxiv.org/abs/1409.1556

Taye, M. M. (2023a). Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Computation, 11(3), 52. https://doi.org/10.3390/computation11030052

Taye, M. M. (2023b). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers, 12(5), 91. https://doi.org/10.3390/computers12050091

Wang, H. (2020). Garbage Recognition and Classification System Based on Convolutional Neural Network VGG16. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 252–255. https://doi.org/10.1109/AEMCSE50948.2020.00061

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., & Deng, S.-H. (2019). Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb. Journal of Electronic Science and Technology, 17(1), 26–40. https://doi.org/10.11989/JEST.1674-862X.80904120

Wu, T. W., Zhang, H., Peng, W., Lü, F., & He, P.-J. (2023). Applications of convolutional neural networks for intelligent waste identification and recycling: A review. Resources, Conservation and Recycling, 190, 106813. https://doi.org/10.1016/j.resconrec.2022.106813

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57(4), 99. https://doi.org/10.1007/s10462-024-10721-6

DOI

https://doi.org/10.21107/rekayasa.v17i3.26456

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Akmal Nusa Bakti, Nabila Husna Shabrina

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.