Plastic Waste Identification using ResNet-50: A Deep Learning Approach
Abstract
Plastic waste is a significant environmental concern, constituting a major portion of the global waste stream. Improper disposal and accumulation have led to severe environmental challenges, including pollution, harm to marine life, and contributions to climate change. Effective waste management strategies are essential to mitigate these issues. However, manual sorting methods are both time-consuming and costly, requiring substantial human effort and financial investment. To address these limitations, automated solutions utilizing advanced technologies like artificial intelligence have gained increasing attention. Deep learning-based method can automatically identify and classify various types of plastic waste using computer-captured image patterns. This study explores the application of ResNet50, a state-of-the-art deep learning model, for the classification of plastic and non-plastic waste. A robust dataset comprising 4,000 diverse images of waste materials was employed for model training and validation. ResNet50, with its advanced architecture designed for image recognition tasks, demonstrated exceptional performance, achieving an accuracy, precision, recall, and F1-score of 0.99. These results highlight the model’s ability to precisely and reliably differentiate between plastic and non-plastic waste categories. The findings of this research underscore the potential of deep learning-based approaches in revolutionizing waste management practices. By leveraging automated classification methods, waste sorting can become significantly faster, more accurate, and cost-effective. This has far-reaching implications reducing environmental harm and fostering a more sustainable future. The results demonstrate that integrating AI technologies into waste management systems can lead to efficient and environmentally friendly solutions for tackling plastic waste challenges.
Keywords
Full Text:
PDFReferences
Ahdita, F. (2019). Identifikasi Jenis Sampah Melalui Convolutional Neural Network [Dataset]. Github. https://github.com/fannyahdita/DSA_tugas_akhir
Alsabt, R., Alkhaldi, W., Adenle, Y. A., & Alshuwaikhat, H. M. (2024). Optimizing waste management strategies through artificial intelligence and machine learning—An economic and environmental impact study. Cleaner Waste Systems, 8, 100158. https://doi.org/10.1016/j.clwas.2024.100158
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
Cheema, S. M., Hannan, A., & Pires, I. M. (2022). Smart Waste Management and Classification Systems Using Cutting Edge Approach. Sustainability, 14(16), 10226. https://doi.org/10.3390/su141610226
Dafid, A., Siwindarto, P., & Siswojo, B. (2021). Kinerja Pendekatan Convolutional Neural Network dan Dense Network dalam Klasifikasi Citra Malaria. Rekayasa, 14(2), 222–229. https://doi.org/10.21107/rekayasa.v14i2.10735
Fadhullah, W., Imran, N. I. N., Ismail, S. N. S., Jaafar, M. H., & Abdullah, H. (2022). Household solid waste management practices and perceptions among residents in the East Coast of Malaysia. BMC Public Health, 22(1), 1. https://doi.org/10.1186/s12889-021-12274-7
Fang, B., Yu, J., Chen, Z., Osman, A. I., Farghali, M., Ihara, I., Hamza, E. H., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence for waste management in smart cities: A review. Environmental Chemistry Letters, 21(4), 1959–1989. https://doi.org/10.1007/s10311-023-01604-3
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90
Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia. (2024, January). Capaian Kinerja Pengelolaan Sampah. Capaian Kinerja Pengelolaan Sampah
Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization (No. arXiv:1412.6980). arXiv. http://arxiv.org/abs/1412.6980
Kumsetty, N. V., Bhat Nekkare, A., S., S. K., & Kumar M., A. (2022). TrashBox: Trash Detection and Classification using Quantum Transfer Learning. 2022 31st Conference of Open Innovations Association (FRUCT), 125–130. https://doi.org/10.23919/FRUCT54823.2022.9770922
Maalouf, A., & Mavropoulos, A. (2023). Re-assessing global municipal solid waste generation. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41(4), 936–947. https://doi.org/10.1177/0734242X221074116
Malik, M., Sharma, S., Uddin, M., Chen, C.-L., Wu, C.-M., Soni, P., & Chaudhary, S. (2022). Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models. Sustainability, 14(12), 7222. https://doi.org/10.3390/su14127222
Middya, A. I., Chattopadhyay, D., & Roy, S. (2021). Garbage Detection and Classification using Faster-RCNN with Inception-V2. 2021 IEEE 18th India Council International Conference (INDICON), 1–6. https://doi.org/10.1109/INDICON52576.2021.9691547
Musa, P., Anam, W. K., Musa, S. B., Aryunani, W., Senjaya, R., & Sularsih, P. (2023). Pembelajaran Mendalam Pengklasifikasi Ekspresi Wajah Manusia dengan Model Arsitektur Xception pada Metode Convolutional Neural Networ. Rekayasa, 16(1), 65–73. https://doi.org/10.21107/rekayasa.v16i1.16974
Ozkaya, U., & Seyfi, L. (2019). Fine-Tuning Models Comparisons on Garbage Classification for Recyclability (No. arXiv:1908.04393). arXiv. http://arxiv.org/abs/1908.04393
Ramos, E., Lopes, A. G., & Mendonça, F. (2024). Application of Machine Learning in Plastic Waste Detection and Classification: A Systematic Review. Processes, 12(8), 1632. https://doi.org/10.3390/pr12081632
Sami, K. N., Amin, Z. M. A., & Hassan, R. (2020). Waste Management Using Machine Learning and Deep Learning Algorithms. International Journal on Perceptive and Cognitive Computing, 6(2), 97–106. https://doi.org/10.31436/ijpcc.v6i2.165
Sari, N., Rahmayanti, H., & Sumargo, B. (2023). Pemilihan Prioritas Pengolahan Sampah dalam Perspektif Pengetahuan Masyarakat Untuk Reduksi Emisi. Rekayasa, 16(3), 345–350. https://doi.org/10.21107/rekayasa.v16i3.22643
Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2(6), 420. https://doi.org/10.1007/s42979-021-00815-1
Serezhkin, A. (2020). Drinking Waste Classification [Dataset]. Kaggle. https://www.kaggle.com/datasets/arkadiyhacks/drinking-waste-classification
Shabrina, N. H., & Brian, A. (2023). A Comparative Analysis of Pre-trained Deep Neural Networks for Mango Leaves Pests and Diseases Identification. ICIC Express Letters, Part B : Applications, 14(11), 1207–1215. https://doi.org/10.24507/icicelb.14.11.1207
Shabrina, N. H., Lika, R. A., & Indarti, S. (2023). Deep learning models for automatic identification of plant-parasitic nematode. Artificial Intelligence in Agriculture, 7, 1–12. https://doi.org/10.1016/j.aiia.2022.12.002
Sharma, P., & Vaid, U. (2021). Emerging role of artificial intelligence in waste management practices. IOP Conference Series: Earth and Environmental Science, 889(1), 012047. https://doi.org/10.1088/1755-1315/889/1/012047
Simonyan, K., & Zisserman, A. (2015, April 10). Very Deep Convolutional Networks for Large-Scale Image Recognition. Proceeding of The 3rd International Conference on Learning Representations (ICLR2015). 3rd International Conference on Learning Representations, San Diego, CA, USA. http://arxiv.org/abs/1409.1556
Taye, M. M. (2023a). Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Computation, 11(3), 52. https://doi.org/10.3390/computation11030052
Taye, M. M. (2023b). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers, 12(5), 91. https://doi.org/10.3390/computers12050091
Wang, H. (2020). Garbage Recognition and Classification System Based on Convolutional Neural Network VGG16. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 252–255. https://doi.org/10.1109/AEMCSE50948.2020.00061
Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., & Deng, S.-H. (2019). Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb. Journal of Electronic Science and Technology, 17(1), 26–40. https://doi.org/10.11989/JEST.1674-862X.80904120
Wu, T. W., Zhang, H., Peng, W., Lü, F., & He, P.-J. (2023). Applications of convolutional neural networks for intelligent waste identification and recycling: A review. Resources, Conservation and Recycling, 190, 106813. https://doi.org/10.1016/j.resconrec.2022.106813
Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57(4), 99. https://doi.org/10.1007/s10462-024-10721-6
DOI
https://doi.org/10.21107/rekayasa.v17i3.26456Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Akmal Nusa Bakti, Nabila Husna Shabrina
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.