Dampak Penambahan Fly Ash Batu Bara Terhadap Kinerja Balok Beton Bertulang Tunggal

Yulinda Sukmawati, Muhtar Muhtar, Hilfi Harisan Ahmad

Abstract

The Paiton Steam Power (PLTU) is an industry that uses coal as fuel. One of the wastes is fly ash. Fly ash can be used as a partial replace cement because it has pozzolanic properties. The aim of this research is to determine the effect of adding coal fly ash on the flexural capacity, stiffness, ductility, crack patterns and failure of single reinforced concrete beams. The test objects consisted of five cylinders and five beams in the proportions of 0% fly ash, 5% fly ash, 10% fly ash, 15% fly ash and 20% fly ash. The fly ash used is type C category. The beam testing uses a four-point loading method. Test results showed that beams containing 15% fly ash have higher performance than other proportions. The flexural capacity of beams containing 15% fly ash increases to 18.96%, ductility increases to 2.74% and stiffness decreases to 24.44% of normal concrete or 0% fly ash. The crack and failure patterns of beams in the proportion fly ash have the same pattern as normal concrete.

Keywords

beam, fly ash, concrete, coal, PLTU Paiton

References

Afrilia, A. T. (2023). Studi eksperimental kekakuan balok beton bertulang rangkap denga agregat normal. Jurnal Smart Teknologi, 4(4), 100–106.

ASTM,C33. (2013). Standard specification for concrete aggregates. United States.

ASTM, C78-02. (2002). Standart test method for flexural strength of concrete (using simple beam with third-point loading). United States.

ASTM,C618-08a. (2008). Standard specification of coal fly ash and raw or calcined natural pozzolan for use in concrete. United States.

ASTM, C535-03. (2003). Standard test method for resistance to degradation of large- size coarse aggregate by abration and impact in the los angeles machine. United States.

Asyari, M. (2023). Perilaku lentur dan geser balok beton normal bertulang dengan abu terbang (fly ash). In Skripsi. Universitas Mataram.

Buarlele, L., Benny, K., & Jonie, T. (2020). Prediksi kekuatan geser beton pada balok beton bertulang tanpa tulangan geser. Jurnal Teknik Sipil, 16(1), 1–13.

Chinh, V. N. (2021). Flexural perfomance of reinforced concrete beams made with locally sourced fly ash. J. Sci and Tech.Civil Enginer, 15(2), 38–50.

Diana, I. A. & Subaidillah, F. (2020). Pengaruh penambahan limbah botol plastik dan variasi fly ash terhadap penyerapan paving blok ramah lingkungan. J. REKAYASA, 13(1), 55–60.

Eisa, S. A., Mostafa, H. A., Ivo, D., & D. (2023). Experimental investigation on behavior of fly ash based geopolymer reinforced concrete beams strengthened with CFRP. J. Heliyon, 9, 1–15.

Gupta, A. K., & Mirza, A. B. (2017). Comparison and analysis of multistoried RCC building in different seismic zones. IJARIIT, 4(3), 367–376.

IS-516-1959, Indian Standart. (1959). Method of tests for strength of concrete. Bureau of Indian Standart.

Ismail, A. G., Andhi, M., Arum, D., Muhammad, M. R., & Kusno, A. S. (2017). Pengaruh beton daur ulang dan bahan tambah fly ash terhadap kuat tekan dan kuat lentur beton struktural ramah lingkungan. Jurnal Riset Rekayasa Sipil, 1(1), 59–63.

Kar, K. K. (2022). Handbook of fly ash. Butterworth-Heinemann is an imprint of Elsevier.

Khasanah, L., & Arief, B. (2022). Pengaruh penambahan FABA terhadap sifat fisik dan derajat keasaman (pH) kompos. Jurnal Teknologi Separasi, 8(3), 460–468.

Klarens, K., Michael, I., Antoni & Diwantoro, H. (2016). Pemanfaatan bottom ash dan fly ash tipe c sebagai bahan pengganti dalam pembuatan paving block. Jurnal Dimensi Pratama Teknik Sipil, 5(2), 1–8.

Luukkonen, T., Zahra, A., Juho, Y., Paivo, K., & Mirja, I. (2018). One-part alkali-activated materials: A review. J. Cement and Concrete Research, 103, 21–34.

Madani, A. P. N. M., Fachriza, N. A., & Budi, H. (2023). Penerapan balok bertulangan tunggal pada ring balk untuk menekan biaya konstruksi. Jurnal Teknologi Sipil, 7(1), 1–7.

Marulitua, A., Deny, S., & Zeldi, M. (2022). Peracangan struktur beton bertulang pada bangunan gedung rumah dan toko 4 lantai di Jalan Sepakat II Kota Pontianak. Rekayasa Teknik Sipil, 2(2), 1–9.

Muharram, M. F., & Eko, W. (2021). Pengaruh penggunaan fly ash sebagai substitusi semen dan limbah kaca sebagai substitusi agregat halus terhadap kuat tekan beton. Jurnal Konstruksi, 19(2), 410–417.

Ngudiyono, Ni Nyoman, N. K., & Rizky, P. (2022). Pemanfaatan fly ash sebagai bahan subtitusi semen pada beton memadat sendiri. Jurnal Teknologi Lingkungan, 23(1), 55–61.

Ningtyas, M. G. C. (2024). Perilaku lentur dan geser balok beton normal bertulang sandwich dengan inti beton ringan berbahan fly ash. In Skripsi, Universitas Mataram.

Pratama, P. H., Rudiansyah, P., & Teuku, B. A. (2020). Kapasitas lentur beton bertulang mutu ultra tinggi menggunakan fly ash batu bara sebagai aditif dan bijih besi sebagai filler. Journal of The Civil Engineering Student, 3(2), 260–266.

Priyatham, S. V. R. P. B., Chaitanya, K. S. V. D. & Kumar, P. G. (2021). Effect of ferrochome slag and fly ash on the mechanical properties of concrete. IOP: Materials Sci. and Engineering, 1025, 1–8.

Pujantara, R. (2014). Struktur beton bertulang dalam perspektif fleksibilitas bentuk dan arsitektur plastis pada rancangan dekonstruksi. J. Forum Bangunan, 12(2), 68–72.

Raj, S. B. & Rao, K. M. (2023). Flexural perfomance of sustainable fly ash based concrete beams. IOP: Earth and Enviroment. Sci, 1130, 1–10.

Samosir, G. B. G., & Rusli, H. A. R. (2021). Pemanfaatan fly ash bottom ash dan tawas untuk menetralkan air asam tambang tawas. Jurnal Bina Tambang, 6(4), 102–111.

Sani, D. S. & Susanti. S. (2020). Pemanfaatan limbah fly ash dari pembakaran batubara pada pembuatan semen PCC (portland composite cement) di PT. Semen XYZ Lampung. Jurnal Ilmiah Teknik Industri, 4(2), 100–105.

Setiawati, M. (2018). Fly ash sebagai bahan pengganti semen pada beton. In Prosiding Semnastek. pag, 1-8, Fakultas Teknik.

Simanjuntak, O. J. & Saragi, E. T. (2021). Beton bermutu dan ramah lingkungan dengan memanfaatkan limbah abu ban bekas. J. VIEKS, 2(2), 141–149.

Suhaimi., & Muajibullah. (2020). Variasi penambahan fly ash terhadap kuat tekan beton. J. REKATEK, 5(1), 10–17.

Tata, A., & S. (2022). Perilaku lentur balok beton betulang dengan bahan tambah fly ash batu bara. Jurnal SIPILsains, 12(1), 49–56.

Wight, J. K., & MacGregor, J. G. (2015). Reinforced concrete mechanics and design. Pearson Education: Boston.

Yadav, V. K., Krishna, K. Y., Vineet, T., Ashok, J., G. G., Nisha, C., Saiful, I., Neha, G., Cao, T. S., & Byong, H. J. (2021). Recent advances in methods for recovery of cenospheres from fly ash and their emerging applications in ceramics, composites, polymers and environmental cleanup. Crystals Journal, 11(8), 1–20.

Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews Journal, 141(1), 105–121.

DOI

https://doi.org/10.21107/rekayasa.v17i2.25784

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Yulinda Sukmawati, Muhtar Muhtar, Hilfi Harisan Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.