Performance Evaluation of Dolomite Fertilizer Production: AHP and Scoring System Approach Based on Performance Prism
Abstract
Fertilizer production often faces various performance issues that can affect efficiency and productivity. One of the main problems is the instability in the quality of raw materials, which can result in variations in the quality of the final product. Workforce performance is also a critical factor, where inadequate training and low motivation can reduce productivity. The lack of an appropriate performance measurement system, such as relevant and accurate Key Performance Indicators (KPIs), can make it difficult for companies to monitor and improve their overall performance. To address these challenges, a performance measurement system is needed that can integrate various aspects of the company (stakeholders). This performance measurement system must be able to accommodate the interests of various parties involved in the company's operations to produce more accurate and relevant information. The performance measurement approach referred to is known as the Performance Prism. It is then supported by using the Objective Matrix (OMAX) method to determine the ranking and class calculation of each KPI and the Traffic Light System (TLS). Based on performance measurements using the Performance Prism, Analytic Hierarchy Process (AHP), and Scoring System at PT. XYZ, there are 53 KPIs divided among various stakeholders. From this analysis, it can be concluded that the design of the company's performance measurement encompasses various aspects involving both internal and external stakeholders. The total performance index of 13.43 indicates overall good performance. In this case, the total KPIs used are 53 KPIs, which include 10 KPIs for employee stakeholders, 5 KPIs for owner stakeholders, 10 KPIs for customer stakeholders, 5 KPIs for government stakeholders, 4 KPIs for investor stakeholders, 10 KPIs for supplier stakeholders, 4 KPIs for partner stakeholders, and 5 KPIs for surrounding community stakeholders. According to the results of the Objective Matrix (OMAX) and Traffic Light System (TLS), it can be seen that 47 KPIs fall into the green category, indicating good achievement, while 3 KPIs fall into the yellow category, and 3 other KPIs fall into the red category, indicating areas requiring further attention for improvement.
Keywords
Full Text:
PDFReferences
Bourne, M. (2021). Performance measurement and management in a VUCA world. International Journal of Production Research, 59(24), 7311–7316. https://doi.org/10.1080/00207543.2021.2004042
Cahyadi, U., & Aziz, R. A. (2022). Perancangan Key Performance Indicator Untuk Mengukur Kinerja di Aromanis Ebeg Karangpawitan Garut Menggunakan Metode Performance Prism. Jurnal Kalibrasi, 20(1), 60–67. https://doi.org/10.33364/kalibrasi/v.20-1.1093
Garengo, P., Sardi, A., & Nudurupati, S. S. (2022). Human resource management (HRM) in the performance measurement and management (PMM) domain: a bibliometric review. International Journal of Productivity and Performance Management, 71(7), 3056–3077. https://doi.org/10.1108/IJPPM-04-2020-0177
Helia, V. N., Sutrisno, W., Zaputra, A. S., & Qurtubi, Q. (2021). Performance measurement system using performance prism approach in batik company: a case study. Jurnal Sistem Dan Manajemen Industri, 5(1), 43–52. https://doi.org/10.30656/jsmi.v5i1.3099
Hidayatullah, S., Dahda, S. S., & Ismiyah, E. (2022). Pengukuran Kinerja Perusahan Menggunakan Metode Objective Matriks (Omax) Dan Analytical Hierarchy Process (Ahp). JUSTI (Jurnal Sistem Dan Teknik Industri), 2(2), 270. https://doi.org/10.30587/justicb.v2i2.3668
Huda, M. (2023). Analisa Produktivitas Pada Divisi Produksi Buku Pt Xyz Menggunakan Metode Objective Matrix (Omax) Dan Fuzzy Analytic Hierarchy Proces (Fahp). SENTRI: Jurnal Riset Ilmiah, 2(7), 2528–2537. https://doi.org/10.55681/sentri.v2i7.1081
Imron. (2019). Penerapan Metode AHP pada Penentuan Sales Terbaik Studi Kasus: PT. Sampoerna Telekomunikasi Indonesia. Jurnal Teknik Komputer AMIK BSI, 5(1), 127–134. https://doi.org/10.31294/jtk.v4i2
Knowles, C. (2023). Managing the unmeasurable: Developing a new performance management framework for the voluntary sector. Public Money and Management. https://doi.org/10.1080/09540962.2023.2275594
Krasodomska, J., & Zarzycka, E. (2020). Key performance indicators disclosure in the context of the EU directive: when does stakeholder pressure matter? Meditari Accountancy Research, 29(7), 1–30. https://doi.org/10.1108/MEDAR-05-2020-0876
Lundgren, C., Bokrantz, J., & Skoogh, A. (2020). Performance indicators for measuring the effects of Smart Maintenance. International Journal of Productivity and Performance Management, 70(6), 1291–1316. https://doi.org/10.1108/IJPPM-03-2019-0129
Mardiono, L., Wibisono, E., dan Jolanda, C. (2019). Pengukuran Kinerja Menggunakan Model Performance Prism (Studi Kasus di Perusahaan Makanan). Proceedings 6th National Industrial Engineering Conference (NIEC-6), 108–115.
Neely, A., dan Adams, C. (2019). Perspectives on performance: the performance prism. Journal of Cost Management, 15(1), 7–15.
Neely, A., dan Gray, D. (2014). Measuring Corporate Management and Leadership Capability Andy Neely, Dina Gray , Mike Kennerley and Bernard Marr Centre for Business Performance , Cranfield School of Management (Issue November).
Ningsih, N. A., dan Astuti, R. D. (2022). Analisis Pengukuran Kinerja Produksi Loom dengan Metode OMAX Scoring System pada Unit Weaving PT . Dan Liris. Seminar Dan Konferensi Nasional IDEC 2022, 1–9.
Novita, E., Marxoni, E., dan Welly, W. (2021). Pengukuran Kinerja Dengan Metode Performance Prism. Inaque : Journal of Industrial and Quality Engineering, 9(1), 49–61. https://doi.org/10.34010/iqe.v9i1.4307
Nugroho, M. W., dan Amudi, A. (2021). Penerapan Analytical Hierarchy Process (AHP) Dalam Pemetaan Berbasis Geographic Information System (GIS).
Pandian, G. R. S., dan Abdul-Kader, W. (2019). Performance evaluation of reverse logistics enterprise–an agent-based simulation approach. International Journal of Sustainable Engineering, 10(6), 384–398. https://doi.org/10.1080/19397038.2017.1370032
Prabowo, R., dan Aditia, R. (2020). Analisis Produktivitas Menggunakan Metode POSPAC dan Performance Prism Sebagai Upaya Peningkatan Kinerja (Studi Kasus: Industri Baja Tulangan di PT. X Surabaya). Jurnal Rekayasa Sistem Industri, 9(1), 11–22. https://doi.org/10.26593/jrsi. v9i1.3362.11-22
Pribadi, Denny . Saputra, Amegia Rizal . Maulanahuddin, J. . G. (2020). Buku Ajar Sistem Pengambilan Keputusan.
Saputra, M. I. H., dan Nugraha, N. (2020). Sistem Pendukung Keputusan Dengan Metode Analytical Hierarchy Process (Ahp) (Studi Kasus: Penentuan Internet Service Provider Di Lingkungan Jaringan Rumah). Jurnal Ilmiah Teknologi Dan Rekayasa, 25(3), 199–212. https://doi.org/10.35760/tr.2020.v25i3.3422
Setiawan, D., Syaputra, M. J., Hadi, Y. K., dan Ikatrinasari, Z. F. (2020). Penerapan Metode Balanced Scorecard Untuk Penentuan Key Performance Indicator di Departemen Production Engineering (Studi Kasus Pada Perusahaan Farmasi PT. X). Journal Industrial Servicess, 5(2). https://doi.org/10.36055/jiss.v5i2.8004
Silaen, N. R., Syamsuriansyah, S., Chairunnisah, R., Sari, M. R., Mahriani, E., Tanjung, R., Triwardhani, D., Haerany, A., Masyruroh, A., & Satriawan, D. G. (2021). Kinerja Karyawan.
Sirait, M. (2020). Analisa Produktivitas pada UKM Dompet Kulit dengan Metode Objective Matriks (OMAX). Teknoin, 26(1), 23–29. https://doi.org/10.20885/teknoin.vol26.iss1.art3
Sudradjat, A., Sodiqin, M., dan Komarudin, I. (2020). Penerapan Metode Analytical Hierarchy Process Terhadap Pemilihan Merek CCTV. Jurnal Infortech, 2(1), 19–30. https://doi.org/10.31294/infortech. v2i1.7660
Supriadi, A., Rustandi, A., Komarlina, D., dan Ardiani, G. T. (2018). Analytical Hierarchy Process (AHP) Teknik Penentuan Strategi Daya Saing Kerajinan Bordir. In Advanced Decision Making for HVAC Engineers.
Tirta, M. A. W. K., & Ni Luh Gede Erni Sulindawati. (2023). Analisis Pengukuran Kinerja dengan Metode Performance PRISM pada Koperasi Kredit Swastiastu. Vokasi : Jurnal Riset Akuntansi, 12(01), 34–47. https://doi.org/10.23887/vjra.v12i01.56187
Van Den Ingh, L., Eshuis, R., & Gelper, S. (2021). Assessing performance of mined business process variants. Enterprise Information Systems, 15(5), 676–693. https://doi.org/10.1080/17517575.2020.1746405
DOI
https://doi.org/10.21107/rekayasa.v17i2.25701Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Fitriatus Sholeha, Farida Pulansari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.