The Effect of Temperature Variation on the Liquefaction of High-Density Polyethylene Plastic Waste
Abstract
This study aims to determine the comparison of oil yields obtained from processing HDPE plastic waste by comparing quantitatively and qualitatively the fuel oil produced. The processing of plastic waste into oil by pyrolysis process was carried out at a temperature variation of (400; 500; 600; 700; 800)°C for 120 minutes. In one experiment, 500 grams of plastic waste, 250 grams of dolomite catalyst, and 250 ml of H2SO4 solvent were required. This research was conducted at the Laboratory of SKL Engineering Department, Jambi University with the parameters tested including volume, mass, %-yield, density, and GC-MS analysis. The results showed that quantitatively the lowest volume, mass, and %-yield were at the 400oC temperature variation, and the highest at 500oC. At 500oC pyrolysis temperature variation, the resulting density was 0.744 grams/ml, and the results of GC-MS analysis produced carbon chains C5-C12 97.6081% (gasoline), C13> 2.3919% (kerosene), and aromatic compounds contained in it amounted to 14.3786%.
Keywords
Full Text:
PDFReferences
Alfernando, O., Nugraha, F. D. A., Prabasari, I. G., Haviz, M., & Nazarudin. (2020). Thermal Cracking of Polyethylene Terepthalate (PET) Plastic Waste. Journal of Physics: Conference Series, 1567(2), 1–7. https://doi.org/10.1088/1742-6596/1567/2/022023
Ardisa, T., Mulyadi, D., Muharam, S., Program, M., Kimia, S., Program, D., & Kimia, S. (2017). Pirolisis limbah plastik polietilena berdensitas rendah menggunakan katalis dolomit. Jurnal Santika, 7(2), 647–655.
Chiwara, B., Makhura, E., Danha, G., Hlabangana, N., Gorimbo, J., & Muzenda, E. (2018). Optimization of the pyrolysis oil fraction: An attainable region approach. Journal for Waste Resources and Residues, 3(1), 68–74. https://doi.org/10.31025/2611-4135/2018.13691
Cuoci, A. (2019). Numerical modeling of reacting systems with detailed kinetic mechanisms. In Department of Chemistry, Materials, and Chemical Engineering (1st ed., Vol. 45). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64087-1.00013-9
Dhaniswara, T. K., & Fahriani, D. D. (2021). Produksi Bahan Bakar Minyak (BBM) dari Sampah Botol Plastik Bekas Air Minum dengan Metode Pirolisis. Journal of Research and Technology, VII(2021), 83–92.
Febrianta, Y., & Yuwono, P. H. (2022). Analisis Kebutuhan Pengembangan Desa Tambaksogra Sebagai Pengrajin Alat Pembakar Sampah Plastik Rendah Polusi (ALBAPALAENSI) Berbahan Baku Barang Bekas. Jurnal Riset Pendidikan Dasar (JRPD), 3(1), 61–65. https://doi.org/10.30595/jrpd.v3i1.13474
Firman, L. O. M., Maulana, E., & Panjaitan, G. (2019). Yield Bahan Bakar Alternatif Dari Optimasi Pirolisis Sampah Plastik Polypropylene. Teknobiz: Jurnal Ilmiah Program Studi Magister Teknik Mesin, 9(2), 14–19. https://doi.org/10.35814/teknobiz.v9i2.532
Hanif, M., Varischa, V., Pauzi, G. A., & Azwar, E. (2016). Pengaruh Dolomit Terkalsinasi pada Karakteristik Produk Cair Pirolisis Limbah Plastik Jenis Polistirena dan Polipropilena. Jurnal Teori Dan Aplikasi Fisika, 4(2), 227–232.
Hu, B., Lu, Q., Wu, Y. ting, Zhang, Z. xi, Cui, M. shu, Liu, D. jia, Dong, C. qing, & Yang, Y. ping. (2018). Catalytic mechanism of sulfuric acid in cellulose pyrolysis: A combined experimental and computational investigation. Journal of Analytical and Applied Pyrolysis, 134(5), 183–194. https://doi.org/10.1016/j.jaap.2018.06.007
Lubi, A., Firman, L. O. M., & Harahap, S. (2017). RANCANG BANGUN MESIN PENGOLAHAN SAMPAH PLASTIK HIGH DENSITY POLYETHELENE MENJADI BAHAN BAKAR MENGGUNAKAN PROSES PIROLISIS. Jurnal Kajian Teknik Mesin, 2(2), 81–88.
Lubis, D. A., Fitrianingsih, Y., Pramadita, S., & Christiadora Asbanu, G. (2022). Pengolahan Sampah Plastik HDPE (High Density Polyethylene) dan PET (Polyethylene Terephtalate) Sebagai Bahan Bakar Alternatif dengan Proses Pirolisis. 20(4), 735–742. https://doi.org/10.14710/jil.20.4.735-742
Masyruroh, A., & Rahmawati, I. (2021). Pembuatan Recycle Plastik Hdpe Sederhana Menjadi Asbak. Jurnal Pengabdian Dan Pemberdayaan Masyarakat, 3(1), 53–63. https://doi.org/10.47080/abdikarya.v3i1.1278
Nofendri, Y. (2018). Pengaruh Penambahan Aditif Etanol Pada Bensin Ron 88 dan Ron 92 Terhadap Prestasi Mesin. Jurnal Konversi Energi Dan Manufaktur, 5(1), 33–39. https://doi.org/10.21009/jkem.5.1.6
Nugraheni, I. K., & Maulana, F. (2019). Premium CAMPURAN BAHAN BAKAR PIROLISIS HDPE DAN PREMIUM TERHADAP KONSUMSI BAHAN BAKAR DAN SUHU MESIN SEPEDA MOTOR 110 CC. Jurnal Elemen, 6(1), 13–19.
Praputri, E., Mulyazmi, Sari, E., & Martynis, M. (2016). Pengolahan Limbah Plastik Polypropylene Sebagai Bahan Bakar Minyak ( BBM ) Dengan Proses Pyrolysis. Seminar Nasional Teknik Kimia – Teknologi Oleo Petro Kimia Indonesia Pekanbaru, Indonesia, 159–168.
Ramadhan, A., & Ali, M. (2019). Pengolahan Sampah Plastik Menjadi Minyak Menggunakan Proses Pirolisis. Jurnal Ilmiah Teknik Lingkungan, 4(1), 44–53.
Sinaga, A. S., Zuhri, A. R., Shafira, N., Rahmat, P., Yoshikawa, M. L., Jatnika, M. A., & Sari, D. A. (2023). Proses Konversi Metanol Menjadi Senyawa Aromatik. Jurnal Teknologi Technoscia, 15(2), 1–7.
Sonawane, Y. B., Shindikar, M. R., & Khaladkar, M. Y. (2017). High calorific value fuel from household plastic waste by catalytic pyrolysis. Journal Of Nature Environment and Pollution Technology, 16(3), 879–882.
Wisnujati, A., & Yudhanto, F. (2020). Analisis karakteristik pirolisis limbah plastik low density polyetylene (LDPE) sebagai bahan bakar alternatif. Turbo: Jurnal Program Studi Teknik Mesin, 9(1), 102–107. https://doi.org/10.24127/trb.v9i1.1158
DOI
https://doi.org/10.21107/rekayasa.v17i2.24252Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Oki Alfernando
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.