PENGGUNAAN SOFTWARE IMAGE-J UNTUK PENGHITUNGAN DAN VISUALISASI 3D TUTUPAN BIOFILM VIBRIO CHOLERAE EL TOR PADA KONDISI TUMBUH BERBEDA
Abstract
Biofilm adalah sekumpulan mikroorganisme yang menempel dalam suatu permukaan dengan perantara matrik eksoplisakarida. Mikroorganisme dalam bentuk biofilm ternyata menjadi sumber kontaminasi sekunder di dalam produk pangan. Kenyataan ini menjadi latar belakang utama bagi peneliti mikrobiologi pangan untuk mempelajari biofilm. Penelitian biofilm bagi sebagian peneliti sangat identik dengan kerumitan proses penghitungan dan visualisasi penutupan permukaan substrat penempelan bakteri. Penelitian ini ditujukan untuk menghitung dan memvisualisasikan biofilm dengan cara sederhana dan mudah melalui software image-J. Pada penelitian ini beberapa faktor lingkungan seperti pH, suhu, dan kondisi kultur telah diujicobakan untuk mengetahui pengaruhnya terhadap pembentukan biofilm Vibrio Cholerae El Tor. Pembentukan biofilm dihitung berdasarkan angka tutupan (Biofilm Coverage Rate) yang kemudian divisualisasikan. Hasil penelitian menunjukkan bahwa pH, suhu, salinitas dan kondisi kultur mampu memberikan pengaruh yang signifikan terhadap pembentukan biofilm Vibrio Cholerae El Tor. Image-J mampu menghitung dan menggambarkan angka tutupan dengan baik dan dapat dijadikan alternatif software analisis biofilm bakteri.
Kata kunci: image-J, biofilm, Vibrio Cholera El Tor
Abstract
Biofilms are microorganisms that attached to a surface with eksoplisakarida matrix. Microorganisms in a biofilm was known to be a secondary source of contamination in food products. This fact trigger many scientist and food microbiologist conducting research biofilms. Research in biofilm for many researchers are identical with the complexity of the assaying and visualizing surface-covered area of biofilm.. This study was aimed to calculate and visualize biofilms in a simple and easy way through software image-J. In this study several environmental factors such as pH, temperature, and culture conditions have been tested to determine its influence on biofilm formation of Vibrio Cholerae El Tor. Biofilm formation was calculated based on Biofilm Coverage Rate (BCR) and then was visualized. The results showed that pH, temperature, salinity and culture conditions had a significant influence on the formation of Vibrio Cholerae El Tor biofilm. This result illustrated that Image-J can be able to calculate and to precisely describe the BCR visualization, therefore it can be used as alternatives software for bacterial biofilms analysis.
Key words: image-J, biofilm, Vibrio Cholera El Tor
Full Text:
PDFReferences
Wirtanen, G., Saarela, M. and Mattila-Sandholm,
T. 2000. Biofilms: impact of hygiene in food industries. In Biofilms II: Process Analysis and Applications ed Bryers, J.D. Wiley–Liss. NewYork. pp. 327–372.
Kim, K. Y. and Frank, J. F. 1995., Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. Journal of Food Protection. 58 (1): 24–28.
Kumar, C. G. and Anand, S. K., 1998. A review: Significance of microbial biofilms in food industry. International Journal of Food Microbiology. 42 (1): 9–27.
Møretrø, T. and Langsrud, S., 2004. Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms. 1: 107–121.
Prihanto, A.A. 2009. Skrining isolat bakteri Quorum Sensing Inhibitor (QSI) sebagai agen penghambat biofilm Vibrio Cholerae El Tor. Tesis. Fakultas Perikanan dan Ilmu Kelautan. Universitas Brawijaya. Malang. p. 73.
Gu F., Lux R., Du-Thumm L., Stokes I., Kreth J., Anderson M.H., Wong D.T., Wolinsky L., 2005. In situ and non-invasive detection of specific bacterial species in oral biofilms using fluorescently labeled monoclonal antibodies. Journal of Microbiology Methods 62: 145–
Singleton, S., Treloar R., Warren P., Watson G.K., Hodgson R., and Allison C. 1997. Methods for microscopic characterization of oral biofilms: analysis of colonization, microstructure, and molecular transport phenomena. Adv. Dent. Res. 11: 133–149.
Kämper, M., Vetterkind S., Berker R., and Hoppert M. 2004. Methods for in situ detection and characterization of extracellular polymers in biofilms by electron microscopy. Journal of Microbiology Methods 57: 55–64.
Gottenbos, B., Mei, H.C.V.D., and Bussche,H.J., 1999. Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology. 310: 523–33.
Adachi, K., Tsurumoto, T., Yonekura, A., Nishimura, S., Kahyama, S., Hirakata, Y., and Shindo, H. 2007. New quantitative image analysis of Staphylococcus biofilm on the surfaces of non translucent metallic biomaterial. J Orthop Sci. 12: 178–184.
Wulff, N.A., Mariano, A.G., Gaurivaud, P., Souza, L.C.A., Virgı´lio, A.C.D., and Monteiro., 2008. Influence of culture medium pH on growth, aggregation, and biofilm formation of Xylella fastidiosa. Curr Microbiol. 57: 127–132.
Pitts, B., Hamilton, M.A., Zelver, N., and Steward, P.S. 2003. A Microtiter plate screening method for biofilm disinfectan and removal. Journal of Microbiology Method. 54: 269–276.
Hasman, H., Bjerrum, M.J., Christiansen, L.E., Hansen, H.C.B., and Aarestrup, F.M., 2009. The effect of pH and storage on copper speciation and bacterial growth in complex growth media. Journal of Microbiological Methods. 78: 20–24.
Baron S., 1996. Medical Microbiology. 4th edition. Editor. Galveston (TX): University of Texas. USA.
Giaorius, E., Chorianopoulos, N., Nychas, G.J.E., 2005. Effect of themperature, pH and water activity on biofilm formation by Salmonella enterica enteridis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. Journal of food protection. 68 (10): 2149–2154.
Bonaventura, G.D., Stepanovic, S., Picciani, Pompilo, A., Piccolomoni, R. 2007. Efek of environemental factors on Biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia microbiol. 52 (1): 86–90.
Hostacka, A., Ciznara, I., Stefkovicova., 2010. Temperature and pH affect the production of bacterial biofilm. Folia Microbiol. 55 (1), 75–78.
Hood, S.K., Zottola, E.A., 1997. Adherence to stainless steel by foodborne microorganisms during growth in model food systems. International Journal of Food Microbiology. 37: 145–153.
Coenye T. and Nelis, H.J., 2010. In vitro and in vivo model systems to study microbial biofilm formation. Journal of Microbiological Methods 83: 89–105.
Busscher HJ, Cowan MM, Van der Mei HC. 1997. Physico-Chemical interactions in initial Microbial Adhesion and relevance for biofilm formation. Adv Dent Res. 2 (1): 24–32.
DOI
https://doi.org/10.21107/rekayasa.v4i2.2335Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Asep Awaludin Prihanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.