REGISTRASI PERMUKAAN OBJEK TIGA DIMENSI BERBASIS FITUR ANGULAR INVARIANT

Meidya Koeshardianto, Eko Mulyanto

Abstract

Registrasi citra sangat penting dalam semua tugas analisis gambar di mana informasi yang diperoleh dari berbagai sumber data seperti penggabungan citra, deteksi perubahan serta perbaikan citra. Bahkan dalam perkembangannya, registrasi citra juga dapat digunakan sebagai identifikasi objek dengan objek yang lain. Dalam penelitian ini membahas tentang registrasi citra tiga dimensi menggunakan fitur angular invariant. Registrasi dapat dilakukan pada objek sebelum terdeformasi. Akan tetapi fitur ini kurang efektif pada objek terdeformasi. Pada objek-objek homogen deformasi maksimum yang dilakukan sebesar 0,4 pada objek beetle dan 0,25 pada objek holes.

 

Kata kunci: angular invariant, registrasi, ekstraksi fitur.

 

Abstract

Image registration which of vital importance in all analysis duties draw where obtained information from various data source like merger of image, detect change and also repair of image. Even in growth, image registration also can be used as to identify object with other object. In this research study concerning 3D image registration use angular invariant feature. Registration can be conducted for image before deformation. However this feature is less effective for deformation image. For homogeneous images like ball and tub, This feature give less individuality for homogeneous images. Maximum conducted deformation equal to 0.4 for beetle image and 0.25 for holes image.

 

Keywords: angular invariant, registration, feature extraxtion.

Full Text:

PDF

References

Jun Jiang, J., Cheng, J., dan Chen, X., (2009), “Registration for 3-D Point Cloud Using Angular-Invariant Feature”, Neurocomputing, vol. 72, pp. 3839–3844

Friendly, M., (2008), “Milestones in the history of thematic cartography, statistical graphics, and data visualization”, diakses dari www.math. yorku.ca/SCS/Gallery/milestone/milestone.pdf, pada tanggal 21 juni 2010.

DOI

https://doi.org/10.21107/rekayasa.v3i2.2296

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Meidya Koeshardianto, Eko Mulyanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.