Sensitivity Analysis of Digital Elevation Model In The Use of Hydrological Applications

Sahid Sahid, Haikal Muhammad Ihsan, Muhammad Abia Saefulloh, Wiedad Diya Ulhaq

Abstract

Assessing DEMs is a critical step in hydrological applications to reduce uncertainties. This study assesses the uncertainty level of using several DEM products by comparing the derivation of watershed morphometric information in the form of hydrological boundaries, river flow networks, and meeting points between river networks. This research assessed three DEM products, namely SRTM, ASTER GDEM, and NASADEM, with the topographic map as reference data for product assessment. The evaluation is based on two criteria: DEM product assessment and morphometric extraction. The second criterion assessment compared river morphometry products from several parameters, including watershed area, river network density, and river network meetings. The analysis results showed that in the first criterion, the NASADEM product was the product with the closest RMSE and PBIAS values to the reference data. Further assessment of river morphometry products shows that the ASTER GDEM watershed area parameter has the closest area value. In the horizontal accuracy parameter of river network products, NASADEM has the smallest average error value. Furthermore, in the accuracy assessment in determining the meeting between tributaries and the main river and the density of river flow, SRTM is the closest compared to other DEM products. The vertical and horizontal accuracy of DEM must be considered before using in hydrologic applications.

Keywords

topography, hidrology, river network, digital elevation model

Full Text:

PDF

References

Abily, M., Bertrand, N., Delestre, O., Gourbesville, P., & Duluc, C. (2016). Spatial Global Sensitivity Analysis of High Resolution classi fi ed topographic data use in 2D urban fl ood modelling. Environmental Modelling and Software, 77, 183–195. https://doi.org/10.1016/j.envsoft.2015.12.002

Abrams, M., & Crippen, R. (2019). ASTER Global DEM (Digital Elevation Mode) - Quick Guide for V3. California Institute of Technology, 3(July), 10.

Abrams, M., Crippen, R., & Fujisada, H. (2020). ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sensing, 12(7), 1–12. https://doi.org/10.3390/rs12071156

Abrams, M., Hook, S., & Ramachandran, B. (2002). ASTER User Handbook: Advanced Spaceborne Thermal Emission and Reflection Radiometer. NASA/Jet Propulsion Laboratory California Institute of Technology. https://lpdaac.usgs.gov/documents/262/ASTER_User_Handbook_v2.pdf

Arifian, N., Denis, K. R., & Putri, S. K. (2023). Comparison of Aster Gdem Images and Srtm Images for River Watershed and Geomorphology Study. International Remote Sensing Applied Journal, 3(2), 68–73. https://doi.org/10.24036/irsaj.v3i2.38

Barnard, P. L. (2019). Dynamic flood modeling essential to assess the coastal impacts of climate change. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40742-z

Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage, J., Olcese, G., & Neal, J. (2021). Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates. Water Resources Research, 57(2). https://doi.org/10.1029/2020WR028673

Bhardwaj, A. (2021). Quality Assessment of merged NASADEM products for varied Topographies in India using Ground Control Points from GNSS. MOL2NET 2020, International Conference on Multidisciplinary Sciences, 6th Edition, January, 2–11. https://mol2net-06.sciforum.net/#section1478

Budiarti, W., Gravitiani, E., & Mujiyo, M. (2017). Upaya Mitigasi Banjir di Sub DAS Samin Melalui Pengembangan Masyarakat Tangguh Bencana. Jurnal Teknologi Lingkungan, 18(2), 241. https://doi.org/10.29122/jtl.v18i2.962

Casas, A., Benito, G., Thorndycraft, V. R., & Rico, M. (2006). The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms, 31, 444–456. https://doi.org/10.1002/esp.1278

Chandrashekar, H., Lokesh, K. V., Sameena, M., roopa, J., & Ranganna, G. (2015). GIS –Based Morphometric Analysis of Two Reservoir Catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4(Icwrcoe), 1345–1353. https://doi.org/10.1016/j.aqpro.2015.02.175

Chauhan, P., Sain, K., Mehta, M., & Singh, S. K. (2022). An Investigation of Cloudburst-triggered Landslides and Flash Floods in Arakot Region of Uttarkashi District, Uttarakhand. Journal of the Geological Society of India, 98(12), 1685–1690. https://doi.org/10.1007/s12594-022-2238-0

Chen, H., Liang, Q., Liu, Y., & Xie, S. (2018). Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling. Journal of Hydrology, 559, 56–70. https://doi.org/10.1016/j.jhydrol.2018.01.056

Choudhari, P. P., Nigam, G. K., Singh, S. K., & Thakur, S. (2018). Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geology, Ecology, and Landscapes, 2(4), 256–267. https://doi.org/10.1080/24749508.2018.1452482

Chymyrov, A. (2021). Comparison of different DEMs for hydrological studies in the mountainous areas. Egyptian Journal of Remote Sensing and Space Science, 24(3), 587–594. https://doi.org/10.1016/j.ejrs.2021.08.001

Crippen, R., Buckley, S., Agram, P., Belz, E., Gurrola, E., Hensley, S., Kobrick, M., Lavalle, M., Martin, J., Neumann, M., Nguyen, Q., Rosen, P., Shimada, J., Simard, M., & Tung, W. (2016). Nasadem global elevation model: Methods and progress. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 125–128. https://doi.org/10.5194/isprsarchives-XLI-B4-125-2016

Deng, F., Rodgers, M., Xie, S., Dixon, T. H., Charbonnier, S., Gallant, E. A., López Vélez, C. M., Ordoñez, M., Malservisi, R., Voss, N. K., & Richardson, J. A. (2019). High-resolution DEM generation from spaceborne and terrestrial remote sensing data for improved volcano hazard assessment — A case study at Nevado del Ruiz, Colombia. Remote Sensing of Environment, 233(July 2018), 111348. https://doi.org/10.1016/j.rse.2019.111348

Dottori, F., Baldassarre, G. Di, & Todini, E. (2013). Detailed data is welcome , but with a pinch of salt : Accuracy , precision , and uncertainty in flood inundation modeling 3 . Data Uncertainty : Can We Model. 49(August 2012), 6079–6085. https://doi.org/10.1002/wrcr.20406

Echogdali, F. Z., Boutaleb, S., Elmouden, A., & Ouchchen, M. (2018). Assessing Flood Hazard at River Basin Scale: Comparison between HECRAS-WMS and Flood Hazard Index (FHI) Methods Applied to El Maleh Basin, Morocco. Journal of Water Resource and Protection, 10(09), 957–977. https://doi.org/10.4236/jwarp.2018.109056

Farr, T. G., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data. Eos, 81(48), 583–585. https://doi.org/10.1029/EO081i048p00583

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. E. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005RG000183

Ferozur Rahaman, M. (2017). Morphometric Analysis of Major Watersheds in Barind Tract, Bangladesh: A Remote Sensing and GIS-Based Approach for Water Resource Management. Hydrology, 5(6), 86. https://doi.org/10.11648/j.hyd.20170506.12

Gesch, D. B. (2018). Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure. Frontiers in Earth Science, 6(December). https://doi.org/10.3389/feart.2018.00230

Geymen, A. (2014). Digital elevation model (DEM) generation using the SAR interferometry technique. Arabian Journal of Geosciences, 7(2), 827–837. https://doi.org/10.1007/s12517-012-0811-3

Gonga-Saholiariliva, N., Gunnell, Y., Petit, C., & Mering, C. (2011). Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis. Progress in Physical Geography, 35(6), 739–764. https://doi.org/10.1177/0309133311409086

Gregory, K. J., & Walling, D. E. (1968). The Variation Of Drainage Density Within A Catchment. International Association of Scientific Hydrology. Bulletin, 13(2), 61–68. https://doi.org/10.1080/02626666809493583

Ha, H., Bui, Q. D., Khuc, T. D., Tran, D. T., Pham, B. T., Mai, S. H., Nguyen, L. P., & Luu, C. (2022). A machine learning approach in spatial predicting of landslides and flash flood susceptible zones for a road network. Modeling Earth Systems and Environment, 8(4), 4341–4357. https://doi.org/10.1007/s40808-022-01384-9

Hawker, L. (2018). Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00233

Hawker, L., Neal, J., & Bates, P. (2019). Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sensing of Environment, 232(July). https://doi.org/10.1016/j.rse.2019.111319

Hidayat, R., Marsono, D., Susanto, S., & Sadono, R. (2022). Komposisi dan Struktur Vegetasi Hulu Daerah ALiran Sungai Cisanggarung, Taman Nasional Gunung Ciremai. Agrienvi: Jurnal Ilmu Pertanian, 16(2), 126–136.

Hong, D. X., Tu, L. H., Binh, N. Q., Hung, L. M., & Thanh, P. (2022). The impact of digital elevation model data sources on identifying catchment boundary in Vietnam. Vietnam Journal of Hydrometeorology, 262–271. https://doi.org/10.36335/VNJHM.2022(EME4).262-271

Horton, R. E. (1932). Drainage‐basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361. https://doi.org/10.1029/TR013i001p00350

Ihsan, H. M., & Sahid. (2021). Vertikal Accuracy Assessment On Sentinel-1, Alos Palsar, And Demnas In The Ciater Basin. Jurnal Geografi Gea, 21(1), 16–25. https://doi.org/10.17509/gea.v21i1.29931

Jamal, S., & Ali, A. (2023). A comparative study of automatic drainage network extraction using ASTER GDEM, SRTM DEM and Cartosat-1 DEM in parts of Kosi basin, Bihar, India. Journal of Umm Al-Qura University for Engineering and Architecture, 14(1), 45–56. https://doi.org/10.1007/s43995-023-00014-4

Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600

Jia, J., Sun, H., Jiang, C., Karila, K., Karjalainen, M., Ahokas, E., Khoramshahi, E., Hu, P., Chen, C., Xue, T., Wang, T., Chen, Y., & Hyyppä, J. (2021). Review on Active and Passive Remote Sensing Techniques for Road Extraction. Remote Sensing, 13(4235), 1–29. https://doi.org/https://doi.org/10.3390/rs13214235

Jin, Y., Yi, C. L., & Fu, P. (2020). Evaluation of the Accuracy of SRTM3 and ASTER GDEM in the Tibetan Plateau Mountain Ranges. E3S Web of Conferences, 206, 1–9. https://doi.org/10.1051/e3sconf/202020601027

Julzarika, A., & Djurdjani. (2019). DEM classifications: Opportunities and potential of its applications. Journal of Degraded and Mining Lands Management, 6(4), 1897–1905. https://doi.org/10.15243/jdmlm.2019.064.1897

Lillesand, T. S., Kiefer, R. W., & Chipman, J. W. (2004). Remote Sensing and Image Interpretation (5th ed.). John Wiley & Sons, Ltd.

Moges, D. M., Virro, H., Kmoch, A., Cibin, R., Rohith, A. N., Martínez-Salvador, A., Conesa-García, C., & Uuemaa, E. (2023). How does the choice of DEMs affect catchment hydrological modeling? Science of the Total Environment, 892(March), 164627. https://doi.org/10.1016/j.scitotenv.2023.164627

Muin, A., & Nandiasa, J. E. (2019). Annual Flood Analysis of Cisanggarung Watershed in Cirebon Regency. Neutron, 18(2), 42–50. https://doi.org/10.29138/neutron.v18i2.76

Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596. https://doi.org/10.1016/j.jhydrol.2021.126088

Specifications for presenting maps - Part 2: Scale 1:25,000, Pub. L. No. 6502.2:2010 (2010).

Nurdin, P. F., & Kubota, T. (2018). Gis-Based Landslide Susceptibility Assessment and Factor Effect Analysis By Certainty Factor in Upstream of Jeneberang River, Indonesia. Geoplanning: Journal of Geomatics and Planning, 5(1), 75. https://doi.org/10.14710/geoplanning.5.1.75-90

Nurdiyanto, N. (2019). Strategy in river flood control. Journal of Physics: Conference Series, 1375(1). https://doi.org/10.1088/1742-6596/1375/1/012061

Pallard, B., Castellarin, A., & Montanari, A. (2009). A look at the links between drainage density and flood statistics. Hydrology and Earth System Sciences, 13(7), 1019–1029. https://doi.org/10.5194/hess-13-1019-2009

Purinton, B., & Bookhagen, B. (2017). Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surface Dynamics, 5(2), 211–237. https://doi.org/10.5194/esurf-5-211-2017

Ramsey, M. S., & Flynn, I. T. W. (2020). The spatial and spectral resolution of ASTER infrared image data: A paradigm shift in volcanological remote sensing. Remote Sensing, 12(4). https://doi.org/10.3390/rs12040738

Sahid, Nurrohman, A. W., & Hadi, M. P. (2018). An investigation of Digital Elevation Model ( DEM ) structure influence on flood modelling. International Conference on Environmental Resources Management in Global Region, 148, 1–12. https://doi.org/10.1088/1755-1315/148/1/012001

Sarkar, D., & Mondal, P. (2020). Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Applied Water Science, 10(1), 1–13. https://doi.org/10.1007/s13201-019-1102-x

Sjarief, A. W. P., & Lasminto, U. (2020). Analysis of water surface profile and flood discharge of Cijangkelok river. IOP Conference Series: Materials Science and Engineering, 930(1). https://doi.org/10.1088/1757-899X/930/1/012079

Sukiyah, E., Sunardi, E., Sulaksana, N., & Raditya Rendra, P. P. (2018). Tectonic geomorphology of upper Cimanuk Drainage Basin, West Java, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 8(3), 863–869. https://doi.org/10.18517/ijaseit.8.3.5441

Sukristiyanti, S., Maria, R., & Lestiana, H. (2018). Watershed-based Morphometric Analysis: A Review. IOP Conference Series: Earth and Environmental Science, 118(1). https://doi.org/10.1088/1755-1315/118/1/012028

Suriadi, A. B., Arsjad, M., & Hartini, S. (2014). Analisis Potensi Risiko Tanah Longsor di Kabupaten Ciamis dan Kota Banjar, Jawa Barat. Majalah Ilmiah Globe, 16, 165–172.

Sutisna, A. S., & Putro, H. (2019). Evaluasi Tingkat Akurasi Digital Elevation Model (DEM) SRTM dan ASTER GDEM dalam Pemodelan Daerah Aliran Sungai (DAS) Ciliwung. Media Komunikasi Teknik Sipil, 24(2), 105. https://doi.org/10.14710/mkts.v24i2.17541

Tan, M. L., Ramli, H. P., & Tam, T. H. (2018). Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resources Management, 32(14), 4591–4606. https://doi.org/https://doi.org/10.1007/s11269-018-2072-8

Tran, T. N. D., Nguyen, B. Q., Vo, N. D., Le, M. H., Nguyen, Q. D., Lakshmi, V., & Bolten, J. D. (2023). Quantification of global Digital Elevation Model (DEM) – A case study of the newly released NASADEM for a river basin in Central Vietnam. Journal of Hydrology: Regional Studies, 45(October 2022), 101282. https://doi.org/10.1016/j.ejrh.2022.101282

Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch, A. (2020). Vertical accuracy of freely available global digital elevation models (Aster, aw3d30, merit, tandem-x, srtm, and nasadem). Remote Sensing, 12(21), 1–23. https://doi.org/10.3390/rs12213482

Waseem, M., Ahmad, S., Ahmad, I., Wahab, H., & Leta, M. K. (2023). Urban flood risk assessment using AHP and geospatial techniques in swat Pakistan. SN Applied Sciences, 5(8). https://doi.org/10.1007/s42452-023-05445-1

Wechsler, S. P. (2007). Uncertainties associated with digital elevation models for hydrologic applications: A review. Hydrology and Earth System Sciences, 11(4), 1481–1500. https://doi.org/10.5194/hess-11-1481-2007

Xia, X. (2019). A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Advances in Water Resources, 132. https://doi.org/10.1016/j.advwatres.2019.103392

DOI

https://doi.org/10.21107/rekayasa.v17i2.22449

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sahid Sahid, Haikal Muhammad Ihsan, Muhammad Abia Saefulloh, Wiedad Diya Ulhaq

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.