Perancangan Alat Pengukur Tinggi Badan dan Berat Badan untuk Penentuan Kondisi Gizi Bayi

Achmad Ubaidillah, Koko Joni, Nasrul Afif, S. Ida Kholida

Abstract

Nutrition is very important for the healthy and normal growth of babies. Determination of infant nutrition is usually calculated from two parameters, namely the baby's height and weight. Both data are then calculated manually to determine the nutritional condition of the baby. The process is considered relatively inefficient. Research is very important to overcome this problem, which will be made a measuring device for height and weight to determine the nutritional condition of babies automatically. This research uses a camera to measure height and a strain gauge sensor to measure weight. Both tools are integrated in a toddler box. The measurement data is then processed by the ATmega16 microcontroller and sent to a PC/laptop for evaluation, storage and appearance of the toddler's condition automatically on the database server. With this research, it is hoped that parents can monitor their baby's nutrition at any time easily and quickly. Based on experiments that have been carried out, measurement of height and weight for determining the nutritional status of infants using the canny detection method, has an average accuracy of 97.32%.

References

Ahfas, A., Hadidjaja, D., Syahrorini, S., & Jamaaluddin, J. (2021). Implementation of ultrasonic sensor as a chemical percol fluid level control based on Atmega 16. IOP Conference Series: Materials Science and Engineering, 1098(4), 042046. https://doi.org/10.1088/1757-899x/1098/4/042046

Ahmat Abdul Muis, Dwiky Kurniawan, Fauzan Ahmad, & Tri Atmaja Pamungkas. (2022). Rancangan Meja Pengatur Ketinggian Otomatis Menggunakan Pendekatan Antropometri Dengan Metode Quality Function Deployment (QFD). Jurnal Teknologi Dan Manajemen Industri Terapan, 1(2), 114–122. https://doi.org/10.55826/tmit.v1iii.26

AKBAR, W. A., & RACHMAT, H. H. (2018). Rancang Bangun Sistem Pengukur Massa Tubuh dan Panjang Badan Elektronik Terintegrasi untuk Evaluasi Gizi Balita. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 6(1), 125. https://doi.org/10.26760/elkomika.v6i1.125

Altazan, A. D., Gilmore, L. A., Guo, J., Rosenberg, D. M., Toupo, D., Gowins, A., Burton, J. H., Beyl, R. A., Chow, C. C., Hall, K. D., & Redman, L. M. (2019). Unintentional error in formula preparation and its simulated impact on infant weight and adiposity. Pediatric Obesity, 14(12), 2–7. https://doi.org/10.1111/ijpo.12564

Amyar, A., Modzelewski, R., Li, H., & Ruan, S. (2020). Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Computers in Biology and Medicine, 126(September), 104037. https://doi.org/10.1016/j.compbiomed.2020.104037

Arad, B., Timofte, R., Ben-Shahar, O., Lin, Y. T., Finlayson, G., Givati, S., Li, J., Wu, C., Song, R., Li, Y., Liu, F., Lang, Z., Wei, W., Zhang, L., Nie, J., Zhao, Y., Po, L. M., Yan, Q., Liu, W., … Md Mansoor Roomi, S. M. (2020). NTIRE 2020 challenge on spectral reconstruction from an RGB image. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 1806–1822. https://doi.org/10.1109/CVPRW50498.2020.00231

Barrett, K. J., & Thompson, A. L. (2022). Infant eating behaviors and Milk feeding independently predict infant size. American Journal of Human Biology, 34(4), 1–12. https://doi.org/10.1002/ajhb.23678

Béghin, L., Marchandise, X., Lien, E., Bricout, M., Bernet, J. P., Lienhardt, J. F., Jeannerot, F., Menet, V., Requillart, J. C., Marx, J., De Groot, N., Jaeger, J., Steenhout, P., & Turck, D. (2019). Growth, stool consistency and bone mineral content in healthy term infants fed sn-2-palmitate-enriched starter infant formula: A randomized, double-blind, multicentre clinical trial. Clinical Nutrition, 38(3), 1023–1030. https://doi.org/10.1016/j.clnu.2018.05.015

Castro, T. G., Gerritsen, S., Teixeira, J. A., Pillai, A., Marchioni, D. M. L., Grant, C. C., Morton, S. M. B., & Wall, C. R. (2022). An index measuring adherence to New Zealand Infant Feeding Guidelines has convergent validity with maternal socio-demographic and health behaviours and with children’s body size. British Journal of Nutrition, 127(7), 1073–1085. https://doi.org/10.1017/S0007114521001720

Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., & Gao, W. (2021). Pre-trained image processing transformer. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12294–12305. https://doi.org/10.1109/CVPR46437.2021.01212

Cheng, H., Eames-Brown, R., Tutt, A., Laws, R., Blight, V., McKenzie, A., Rossiter, C., Campbell, K., Sim, K., Fowler, C., Seabury, R., & Denney-Wilson, E. (2020). Promoting healthy weight for all young children: a mixed methods study of child and family health nurses’ perceptions of barriers and how to overcome them. BMC Nursing, 19(1), 1–14. https://doi.org/10.1186/s12912-020-00477-z

Cheng, H., Rossiter, C., Size, D., & Denney-Wilson, E. (2022). Comprehensiveness of infant formula and bottle feeding resources: A review of information from Australian healthcare organisations. Maternal and Child Nutrition, 18(2). https://doi.org/10.1111/mcn.13309

Cheng, H., Tutt, A., Llewellyn, C., Size, D., Jones, J., Taki, S., & Denney-Wilson, E. (2020). Content and quality of infant feeding smartphone apps: Five-year update on a systematic search and evaluation. JMIR MHealth and UHealth, 8(5). https://doi.org/10.2196/17300

Demmelmair, H., Fleddermann, M., & Koletzko, B. (2022). Infant Feeding Choices during the First Post-Natal Months and Anthropometry at Age Seven Years: Follow-Up of a Randomized Clinical Trial. Nutrients, 14(19). https://doi.org/10.3390/nu14193900

Donovan, S. M., Aghaeepour, N., Andres, A., Azad, M. B., Becker, M., Carlson, S. E., Järvinen, K. M., Lin, W., Lönnerdal, B., Slupsky, C. M., Steiber, A. L., & Raiten, D. J. (2023). Evidence for human milk as a biological system and recommendations for study design—a report from “Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)” Working Group 4. American Journal of Clinical Nutrition, 117(June 2022), S61–S86. https://doi.org/10.1016/j.ajcnut.2022.12.021

Gerasimidis, K., Milani, S., Tester, A., Purcell, O., Woodley, C., Tsiountsioura, M., Koulieri, A., Zerva, O., Loizou, K., Rafeey, M., Kontogianni, M., & Wright, C. (2019). A multicentre development and evaluation of a dietetic referral score for nutritional risk in sick infants. Clinical Nutrition, 38(4), 1636–1642. https://doi.org/10.1016/j.clnu.2018.08.017

Giugliani, E. R. J. (2019). Growth in exclusively breastfed infants. Jornal de Pediatria, 95, 79–84. https://doi.org/10.1016/j.jped.2018.11.007

Hidayat, M. R., Anugrah, T., & Munir, A. (2019). ATmega16 microcontroller-based automatic coffee brewing system using pour over V60 technique. 2019 16th International Conference on Quality in Research, QIR 2019 - International Symposium on Electrical and Computer Engineering, in ml, 1–4. https://doi.org/10.1109/QIR.2019.8898285

Hossain, M. D., & Chen, D. (2019). Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150(February), 115–134. https://doi.org/10.1016/j.isprsjprs.2019.02.009

Imdad, A., Ehrlich, J. M., Catania, J., Tanner-Smith, E., Smith, A., Tsistinas, O., & Bhutta, Z. A. (2021). Effect of consumption of animal milk compared to infant formula for non-breastfed/mixed-fed infants 6-11 months of age: A systematic review (protocol). BMJ Open, 11(2). https://doi.org/10.1136/bmjopen-2020-046370

Judd, A. L., Beck, K. L., McKinlay, C., Jackson, A., & Conlon, C. A. (2020). Validation of a Complementary Food Frequency Questionnaire to assess infant nutrient intake. Maternal and Child Nutrition, 16(1), 1–11. https://doi.org/10.1111/mcn.12879

Kaldenbach, S., Engebretsen, I. M. S., Haskins, L., Conolly, C., & Horwood, C. (2022). Infant feeding, growth monitoring and the double burden of malnutrition among children aged 6 months and their mothers in KwaZulu-Natal, South Africa. Maternal and Child Nutrition, 18(1). https://doi.org/10.1111/mcn.13288

Kapur, D. (2023). Design and Manufacture of Automatic Swallow Caller Tool with Sound Output Based on ATMega16 Microcontroller. 1(1), 11–17.

Kim, Y. W., Innila Rose, J., & Krishna, A. V. N. (2020). A Study on the Effect of Canny Edge Detection on Downscaled Images. Pattern Recognition and Image Analysis, 30(3), 372–381. https://doi.org/10.1134/S1054661820030116

Kotowski, J., Fowler, C., Hourigan, C., & Orr, F. (2020). Bottle-feeding an infant feeding modality: An integrative literature review. Maternal and Child Nutrition, 16(2), 1–20. https://doi.org/10.1111/mcn.12939

Kouwenhoven, S. M. P., Antl, N., Finken, M. J. J., Twisk, J. W. R., van der Beek, E. M., Abrahamse-Berkeveld, M., van de Heijning, B. J. M., van Goudoever, J. B., & Koletzko, B. V. (2021). Long-term effects of a modified, low-protein infant formula on growth and body composition: Follow-up of a randomized, double-blind, equivalence trial. Clinical Nutrition, 40(6), 3914–3921. https://doi.org/10.1016/j.clnu.2021.04.034

Kulandaisamy, S. V., Thirumalaikumaran, A., Mohanraju, M., & Sundareswaran, S. P. (2021). Prevention of Lp Gas Accident By Using Atmega16 Microcontroller. International Research Journal of Engineering and Technology, January. https://www.researchgate.net/publication/348590387

Latif, A., & Megantoro, P. (2020). Traffic Light Regulatory System Based on Fuzzy Algorithm Using Microcontroller. Journal of Physics: Conference Series, 1464(1). https://doi.org/10.1088/1742-6596/1464/1/012034

Lee, C. H., Liu, Z., Wu, L., & Luo, P. (2020). MaskGAN: Towards Diverse and Interactive Facial Image Manipulation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 5548–5557. https://doi.org/10.1109/CVPR42600.2020.00559

Li, G., Liu, Z., Member, S., Chen, M., Bai, Z., Lin, W., & Ling, H. (2021). for RGB-D Salient Object Detection. 30, 3528–3542.

Liu, N., Zhang, N., & Han, J. (2020). Learning Selective Self-Mutual Attention for RGB-D Saliency Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 13753–13762. https://doi.org/10.1109/CVPR42600.2020.01377

Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S. X., Ni, D., & Wang, T. (2019). Deep Learning in Medical Ultrasound Analysis: A Review. Engineering, 5(2), 261–275. https://doi.org/10.1016/j.eng.2018.11.020

Maier, A., Syben, C., Lasser, T., & Riess, C. (2019). A gentle introduction to deep learning in medical image processing. Zeitschrift Fur Medizinische Physik, 29(2), 86–101. https://doi.org/10.1016/j.zemedi.2018.12.003

Nahrowi, D., & Hariyanto, D. (2022). Development and Evaluation of Portable Microcontroller Training System. Journal of Physics: Conference Series, 2406(1), 0–8. https://doi.org/10.1088/1742-6596/2406/1/012012

Nemerimana, M., Karambizi, A. C., Umutoniwase, S., Barnhart, D. A., Beck, K., Bihibindi, V. K., Wilson, K., Nshimyiryo, A., Bradford, J., Havugarurema, S., Uwamahoro, A., Nsabyamahoro, E., & Kirk, C. M. (2021). Evaluation of an mHealth tool to improve nutritional assessment among infants under 6 months in paediatric development clinics in rural Rwanda: Quasi-experimental study. Maternal and Child Nutrition, 17(4), 1–12. https://doi.org/10.1111/mcn.13201

Piao, Y., Rong, Z., Zhang, M., Ren, W., & Lu, H. (2020). A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 9057–9066. https://doi.org/10.1109/CVPR42600.2020.00908

Pinaryanto, K., Nugroho, R. A., & Basilius, Y. (2021). Classification of Toddler Nutrition Using C4.5 Decision Tree Method. International Journal of Applied Sciences and Smart Technologies, 03(01), 131–142. https://doi.org/10.24071/ijasst.v3i1.3366

Rahmawati, S., Devita, R., Zain, R. H., Rianti, E., Lubis, N., & Wanto, A. (2021). Prewitt and Canny Methods on Inversion Image Edge Detection: An Evaluation. Journal of Physics: Conference Series, 1933(1). https://doi.org/10.1088/1742-6596/1933/1/012039

Sekehravani, E. A., Babulak, E., & Masoodi, M. (2020). Implementing canny edge detection algorithm for noisy image. Bulletin of Electrical Engineering and Informatics, 9(4), 1404–1410. https://doi.org/10.11591/eei.v9i4.1837

Singh, A., Sengupta, S., & Lakshminarayanan, V. (2020). Explainable deep learning models in medical image analysis. Journal of Imaging, 6(6), 1–19. https://doi.org/10.3390/JIMAGING6060052

Sun, P., Zhang, W., Wang, H., Li, S., & Li, X. (2021). Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1407–1417. https://doi.org/10.1109/CVPR46437.2021.00146

Tongchom, W., Pongcharoen, T., Judprasong, K., Udomkesmalee, E., Kriengsinyos, W., & Winichagoon, P. (2020). Human Milk Intake of Thai Breastfed Infants During the First 6 Months Using the Dose-to-Mother Deuterium Dilution Method. Food and Nutrition Bulletin, 41(3), 343–354. https://doi.org/10.1177/0379572120943092

Toro-Campos, R., Algarín, C., Peirano, P., Peña, M., Murguia-Peniche, T., Wu, S. S., & Uauy, R. (2020). Effect of feeding mode on infant growth and cognitive function: Study protocol of the Chilean infant Nutrition randomized controlled Trial (ChiNuT). BMC Pediatrics, 20(1), 1–11. https://doi.org/10.1186/s12887-020-02087-9

Ubaidillah, A., Rochman, E. M. S., Fatah, D. A., & Rachmad, A. (2022). Classification of Corn Diseases using Random Forest, Neural Network, and Naive Bayes Methods. Journal of Physics: Conference Series, 2406(1). https://doi.org/10.1088/1742-6596/2406/1/012023

Wang, A., Zhang, W., & Wei, X. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Computers and Electronics in Agriculture, 158(February), 226–240. https://doi.org/10.1016/j.compag.2019.02.005

Wang, G., Zhang, T., Yang, Y., Cheng, J., Chang, J., Liang, X., & Hou, Z. (2020). Cross-Modality Paired-Images Generation for RGB-Infrared Person Re-Identification.

Wanto, A., Rizki, S. D., Andini, S., Surmayanti, S., Ginantra, N. L. W. S. R., & Aspan, H. (2021). Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification. Journal of Physics: Conference Series, 1933(1). https://doi.org/10.1088/1742-6596/1933/1/012037

Wijaya, N. H., Fauzi, F. A., Helmy, E. T., Nguyen, P. T., & Atmoko, R. A. (2020). The design of heart rate detector and body temperature measurement device using ATMega16. Journal of Robotics and Control (JRC), 1(2), 40–43. https://doi.org/10.18196/jrc.1209

Wijaya, N. H., Mujib, A. K., Santoso, A. B., & Supriyadi, K. (2020). Design and Development of Heart Rate per Minutes Based on Atmega16 Microcontroller with Alarm Warning. IOP Conference Series: Materials Science and Engineering, 835(1). https://doi.org/10.1088/1757-899X/835/1/012053

Willenberg, L. K., Dechent, P., Fuchs, G., Sauer, D. U., & Figgemeier, E. (2020). High-precision monitoring of volume change of commercial lithium-ion batteries by using strain gauges. Sustainability (Switzerland), 12(2). https://doi.org/10.3390/su12020557

Xu, Z., Ji, X., Wang, M., & Sun, X. (2021). Edge detection algorithm of medical image based on Canny operator. Journal of Physics: Conference Series, 1955(1). https://doi.org/10.1088/1742-6596/1955/1/012080

Yu, X., Wang, Z., Wang, Y., & Zhang, C. (2021). Edge Detection of Agricultural Products Based on Morphologically Improved Canny Algorithm. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/6664970

Zhang, J., Fan, D. P., Dai, Y., Anwar, S., Saleh, F. S., Zhang, T., & Barnes, N. (2020). UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8579–8588. https://doi.org/10.1109/CVPR42600.2020.00861

Zhou, T., Fan, D. P., Cheng, M. M., Shen, J., & Shao, L. (2021). RGB-D salient object detection: A survey. Computational Visual Media, 7(1), 37–69. https://doi.org/10.1007/s41095-020-0199-z

DOI

https://doi.org/10.21107/rekayasa.v17i1.22360

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Achmad Ubaidillah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.