PEMETAAN HARGA RUMAH DENGAN MENGGUNAKAN MODEL STATISTIK : GEOGRAPHICALLY WEIGHTED REGRESSION

Kukuh Winarso, Achmad Dafid

Abstract

Penentuan harga rumah di sebagian kota-kota besar di Indonesia dipengaruhi oleh banyak faktor, salah satunya adalah lokasi rumah. Lokasi rumah menunjukkan hubungan yang positip dengan harga rumah. Lokasi rumah dekat dengan pusat bisnis adalah salah satu hal yang menyebabkan harga rumah menjadi mahal. Disamping itu pusat pemukiman berdasar kepadatan penduduk di satu sisi menyebabkan harga rumah menjadi naik pada posisi yang lain menyebabkan harga rumah menjadi turun. Penelitian ini berbasis pada pemetaan harga rumah yang dipengaruhi oleh pusat bisnis dan pusat pemukiman penduduk dikota Surabaya. Pemetaan Harga rumah ini menggunakan metode Geographically Weighted Regression (GWR). adalah suatu teknik yang membawa kerangka dari model regresi sederhana menjadi model regresi terboboti.

Keywords

pemetaan, spasial, Geographically Weighted Regression

References

Boote, K., Jones, J., & Pickering, N. (1996). Potent Uses and Limitations of Crops Models. Agronomy Journal. (88): 704-716.

BPS. (2012). Surabaya dalam angka. Surabaya: Badan Pusat Statistik.

Brunsdon, C., Fotheringham, A., Charlton, (1999). Some Notes On parametric Significance Tests For Geographically Weighted Regression. Journal Of Regional Science. (39): 497-524.

Cressie, N, A, C. (1993). Statistics For Spatial Data. New York: John Wiley and Sons. Inc.

Daniel (1989). Statistika Nonparametrik Terapan. Jakarta: PT. Gramedia

Draper, N. and Smith, H. (1992). Applied Regression Analysis (Second Edition). New York: John Wiley and Sons. Inc.

Fotheringham, A. S., Charlton, M. E., dan Brunsdon, C. (1997). Geographically Weighted Regression: A Natural Evolution of The Expansion Method for Spatial Data Analysis. Environment and Planning A 1998. (30): 1905-1927.

Giordano, F., & Weir, W. (2013). A First Course in Mathematical Modelling. California: Brooks/Cole Publ. Company.

Goovaerts, P. (1997). Geostatistics for Natural Resource Evaluation. Oxford University Press, New York.

Gujarati, D. (2004). In Basic Econometric, Fourth Edition. New York: Mc. Graw-Hill, Inc.

Grob, j. (2003). Variance Inflation Factors. Review News. (3): 13-15

Hocking, R. R. (1996). Methods and Applications of Linear Models: Regression and the

Analysis of Variance. John Wiley & Sons, New York

Huang B, Wu. B, and Michael Barry (2010). Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices. International Journal of Geographical Information Science. (24): 383-401

Leung Y., Mei Chang L., & ZhangWen X. (2000a), Statistical Test for Spatial Nonstationarity Based on the Geographically Weighted Regression Model, Environment and Planning. (32): 871 – 890.

Lippi, G., Favaloro, E. J., Franchini, M., & Guidi, G. C. (2008). Air Pollution And Coagulation Testing: A New Source of Biological Variability? Thrombosis Research. (1): 50–54.

Mei, C., He, S., & Fang, K. (2004). A Note On The Mixed Geographically Weighted Regression Model. Journal of Regional Science. (2): 143-157.

Mennis, J. (2006). Mapping the Results of Geographically Weighted. The Cartographic. (43): 171-179.

Meyer, W. (1987). Concepts of Mathematical Modelling. New York: Mc.Graw-Hill Inc.

Minitab Inc. (1991). MinitabReference Manual V8. State College, USA

Rencher, A, C. (2000), Linear Models in Statistics, John Wiley & Sons, New York

Szymanowski, M., & Kryza, M. (2011). Application of Geographically Weighted Regression for Modelling the Spatial Structure of Urban Heat Island in the City of Wroclaw (SW Poland) . Procedia Environmental Sciences.(3): 87-92.

Tu, J. (2011). Spatially Varying Relationships Between Land Use and Water Quality Across an Urbanization Gradient Explored by Geographically Weighted Regression. Applied Geography. (31): 376-392.

Walter J., Carsten R. and Jeremy W. Lichstein (2005). Local and Global Approaches to Spatial Data Analysis in Ecology, Global Ecology and Biogeography. (14): 97-98.

Yu & Wie. (2005), Modeling Spatial Dimensions of Housing Prices in Milwaukee, WI. Environment and Planning B: Planning and Design. (34): 1085-1102.

Yu, P.H., and Lay, J.G. (2011). Exploring Non-Stationarity of Local Mechanism of Crime Events with Spatial-Temporal Weighted Regression. Spatial Data Mining and Geographical Knowledge Services (ICSDM), 2011 IEEE International Conference on. 7-12

DOI

https://doi.org/10.21107/rekayasa.v15i3.21818

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Kukuh Winarso

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.