Adsorption, Kinetic and Thermodynamic Studies for the Adsorption of Cadmium onto Combination of Chitosan and Coffee Ground Activated Carbon

Nisa Nurhidayanti, Agus Riyadi

Abstract

The presence of cadmium in water due to its natural mobility can cause the nature of the water to become toxic and threaten the surrounding ecosystem when it accumulates in the food chain. The aim of this study was to investigate the maximum adsorption capacity using an isothermal model, to determine the rate of adsorption kinetics using chitosan and coffee powder adsorbents in reducing cadmium concentrations in industrial wastewater, and to investigate its thermodynamic magnitude. The research method was applied with laboratory experiments followed by quantitative data analysis to determine the isothermal model and adsorption kinetics. The results showed that the adsorption isotherm follows the Langmuir isotherm model with a correlation coefficient of 0.9970 and a maximum adsorption capacity of 0.7546 mg.g-1, which indicates that the chemical adsorption occurs in a monolayer, where the  adsorption sites are homogeneously distributed with the adsorption energy. Permanent and negligible interactions between cadmium molecules (adsorbate) and adsorbent. Thus the pseudo second order kinetic model is a better way to explain the reaction rate for cadmium in combination chitosan and coffee ground activated carbon. Negative ΔGo values indicate that the adsorption reaction takes place spontaneously, ΔHo of 0.3467 indicates an endothermic reaction, and ΔSo of 3.5296 indicates an increase in the randomness of the adsorption process at the adsorbent interface and cadmium during adsorption.

Keywords

adsorption capacity, cadmium, chitosan, coffee ground

Full Text:

PDF

References

Ahmadi, M., Hazrati Niari, M., & Kakavandi, B. (2017). Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a recoverable mesoporous magnetic composite for effective heavy metals removal. Journal of Molecular Liquids, 248, 184–196. https://doi.org/10.1016/j.molliq.2017.10.014

Das, S., Chakraborty, J., Chatterjee, S., & Kumar, H. (2018). Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environmental Science: Nano, 5(12), 2784–2808. https://doi.org/10.1039/C8EN00799C

Dirbaz, M., & Roosta, A. (2018). Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. Journal of Environmental Chemical Engineering, 6(2), 2302–2309. https://doi.org/10.1016/j.jece.2018.03.039

Hevira, L., & Gampito. (2022). The Kinetic Analysis and Adsorption Isotherm of Chicken Egg Shells and Membranes Against Synthetic Dyes. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 13(2), 28–36. https://doi.org/10.21771/jrtppi.2022.v13.no2.p28-36

Khalil, U., Bilal Shakoor, M., Ali, S., Rizwan, M., Nasser Alyemeni, M., & Wijaya, L. (2020). Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater. Journal of Saudi Chemical Society, 24(11), 799–810. https://doi.org/10.1016/j.jscs.2020.07.001

Kim, H., Hwang, Y. S., & Sharma, V. K. (2014). Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chemical Engineering Journal. https://www.sciencedirect.com/science/article/pii/S1385894714007669

Lessa, E. F., Nunes, M. L., & Fajardo, A. R. (2018). Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydrate Polymers, 189(February), 257–266. https://doi.org/10.1016/j.carbpol.2018.02.018

Menteri Lingkungan Hidup. (2014). KepMen LH nomor 5 / 2014. In Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 (p. 81). ditjenpp.kemenkumham.go.id/arsip/bn/2014/bn1815-2014.pdf

Nurhidayanti, N., Ilyas, N. I., & Suwazan, D. (2021). Efektivitas Kombinasi Kitosan dan Ampas Kopi sebagai Adsorben Alami dalam Menurunkan Konsentrasi Arsen Pada Limbah Cair PT PXI. Jurnal Tekno Insentif, 15(2), 76–87. https://doi.org/10.36787/jti.v15i2.584

Nurhidayanti, N., & Nugraha, S. (2022). Kajian Isoterm dan Kinetika Adsorpsi Logam Arsen menggunakan Biosorben Kombinasi Kitosan dan Karbon Aktif Ampas Kopi. Prosiding SAINTEK: Sains Dan Teknologi, 1(1), 445–451.

Nuryono, N., Miswanda, D., Sakti, S. C. W., Rusdiarso, B., Krisbiantoro, P. A., Utami, N., Otomo, R., & Kamiya, Y. (2020). Chitosan-functionalized natural magnetic particle@silica modified with (3-chloropropyl)trimethoxysilane as a highly stable magnetic adsorbent for gold(III) ion. Materials Chemistry and Physics, 255(February), 123507. https://doi.org/10.1016/j.matchemphys.2020.123507

Pagalan, E., Sebron, M., Gomez, S., Salva, S. J., Ampusta, R., Macarayo, A. J., Joyno, C., Ido, A., & Arazo, R. (2020). Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Industrial Crops and Products, 145(June), 111953. https://doi.org/10.1016/j.indcrop.2019.111953

Purnama, F. (2019). Pembuatan dan Karakterisasi Kitosan-Karbon Aktif dari Ampas Kopi Sebagai Adsorben Untuk Menurunkan Kadar Logam Kadmium dan Nikel. In Tesis. Universitas Sumatera Utara.

Qomariyah, L., Arisandi, A., HIdayah, Z., & Farid, A. (2023). Kajian Morfometrik dan Tingkat Kematangan Gonad Rajungan (Portunus pelagicus) di Pagagan Pamekasan. Akuatika Indonesia, 8(2), 87-95.

Said, N. I. (2018). Metoda Penghilangan Logam Berat (As, Cd, Cr, Ag, Cu, Pb, Ni Dan Zn) di dalam Air Limbah Industri. Jurnal Air Indonesia, 6(2), 136–148. https://doi.org/10.29122/jai.v6i2.2464

Sunsandee, N., Ramakul, P., Phatanasri, S., & Pancharoen, U. (2020). Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf : Kinetic and equilibrium studies. Biotechnology Reports, 27, e00488. https://doi.org/10.1016/j.btre.2020.e00488

Suwazan, D., & Nurhidayanti, N. (2022). Efektivitas Kombinasi Kitosan dan Ampas Teh Sebagai Adsorben Alami dalam Menurunkan Konsentrasi Timbal Pada Limbah Cair PT PXI. Jurnal Ilmu Lingkungan, 20(1), 37–44. https://doi.org/10.14710/jil.20.1.37-44

Suwazan, D., Nurhidayanti, N., Fahmi, A. B., & Riyadi, A. (2022). Pemanfaatan Kitosan Dan Karbon Aktif Dari Ampas Teh Dalam Menurunkan Logam Kadmium Dan Arsen Pada Limbah Industri PT X. 10(2), 91–102.

Wang, J., & Guo, X. (2020a). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279

Wang, J., & Guo, X. (2020b). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390(January), 122156. https://doi.org/10.1016/j.jhazmat.2020.122156

Yanyan, L., Kurniawan, T. A., Zhu, M., Ouyang, T., Avtar, R., Dzarfan Othman, M. H., Mohammad, B. T., & Albadarin, A. B. (2018). Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO3, ozone, and/or chitosan. Journal of Environmental Management, 226(August), 365–376. https://doi.org/10.1016/j.jenvman.2018.08.032

DOI

https://doi.org/10.21107/rekayasa.v17i1.20364

Metrics

Refbacks



Copyright (c) 2024 Nisa Nurhidayanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.