Pengaruh Kombinasi Jumlah Piston dan Turbin Terhadap Performa Pembangkit Listrik Tenaga Mekanisme Oscillating Water Column

Fideryan Axel Pratama, Miftahul Ulum, Ardi Noerpamoengkas

Abstract

The need for electrical energy is very high, but fossil power plants are running low. Consequently, innovations in alternative energy sources are increasing, including sea waves. The geographical location of Indonesia, which is a country with several islands and is accompanied by several beaches, has the potential to bring up innovations in alternative renewable energy, namely wave power plants. In Indonesia, several regions have used sea wave power plants with the OWC (Oscillating Water Column) system. Therefore, this study conducted an experimental OWC test of a piston and turbin as combination mechanism in a water wave power plant by combining the number of pistons and turbines in 3 variations, i.e., 1 piston with 2 turbines, 1 piston with 1 turbine, and 2 pistons with 1 turbine. This experiment compared the effects of the combination of the number of pistons and turbines on the torque, voltage rotation, mechanical power, electrical power, and efficiency of the three combinations. The research results indicated that the combination of 1 piston and 1 turbine produced the highest torque of 4.73 Nm, while the combination of 1 piston and 2 turbines yielded 0.76 Nm, and 2 pistons and 1 turbine generated 4.47 Nm. Out of the three combinations, the highest electrical and mechanical power occurred in the combination of 1 piston and 1 turbine at 8 watts and 298.4 joules per second, respectively, with a voltage of 0.89663 volts, a rotation of 603 rpm, and an efficiency of 10%.

Keywords

piston mechanism, power, electrical, turbine, wave

References

Ahsan, M. (2021). Tantangan dan Peluang Pembangunan Proyek Pembangkit Listrik Energi Baru Terbarukan (EBT) di Indonesia. Sutet, 11(2), 81–93. https://doi.org/10.33322/sutet.v11i2.1575

Alamian, R., Shafaghat, R., Miri, S. J., Yazdanshenas, N., & Shakeri, M. (2014). Evaluation of technologies for harvesting wave energy in Caspian Sea. Renewable and Sustainable Energy Reviews, 32, 468–476. https://doi.org/10.1016/j.rser.2014.01.036

Batlle Martin, M., Pinon, G., Barajas, G., Lara, J. L., & Reveillon, J. (2023). Computations of pressure loads on an oscillating water column with experimental comparison for random waves. Coastal Engineering, 179. https://doi.org/10.1016/j.coastaleng.2022.104228

Brusca, S., Cucinotta, F., Galvagno, A., Lanzafame, R., Mauro, S., & Messina, M. (2015). Oscillating Water Column Wave Energy Converter by means of straight-bladed Darrieus turbine. Energy Procedia, 82, 766–773. https://doi.org/10.1016/j.egypro.2015.11.809

Brusca, S., Galvagno, A., Lanzafame, R., Cugno Garrano, A. M., Mauro, S., & Messina, M. (2017). On the turbine-induced damping in Oscillating Water Column wave energy converter. Energy Procedia, 126, 581–588. https://doi.org/10.1016/j.egypro.2017.08.215

Budiarso, Warjito, Naufal Lubis, M., & Adanta, D. (2019). Performance of a low cost spoon-based turgo turbine for pico hydro installation. Energy Procedia, 156, 447–451. https://doi.org/10.1016/j.egypro.2018.11.087

Gadelho, J. F. M., & Guedes Soares, C. (2022). CFD study of a Dual Chamber Floating Oscillating Water Column device. Ocean Engineering, 261. https://doi.org/10.1016/j.oceaneng.2022.111817

Nasir, B. A. (2014). Design considerations of micro-hydro-electric power plant. Energy Procedia, 50, 19–29. https://doi.org/10.1016/j.egypro.2014.06.003

Noerpamoengkas, A., & Ulum, M. (2015). Pemodelan Pengaruh Frekuensi Dan Amplitudo Eksitasi Terhadap Respon Gerak Dan Daya Mekanis Pendulum Vertikal Pada Konverter Energi Gelombang Laut. Prosiding Seminar Nasional Sains Dan Teknologi Terapan III, 201–210.

Pamungkas, Y., Ulum, M., Noerpamoengkas, A., Mesin, J. T., Industri, T., Adhi, T., & Surabaya, T. (n.d.). Study Eksperimental Pembangkit Listrik Tenaga Gelombang Laut Metode Mekanis Apung Menggunakan Sistem Transmisi Sproket dan Variasi Panjang Lengan.

Rosati, M., C. Henriques, J. C., & Ringwood, J. V. (2022). Oscillating-water-column wave energy converters: A critical review of numerical modelling and control. Energy Conversion and Management: X, 100322. https://doi.org/10.1016/j.ecmx.2022.100322

Susastro, S., Noerpamoengkas, A., Ulum, M., & Setyono, G. (2020). Performance Analysis of Wind Power Generation Models Using Oscillating Water Column. JRST (Jurnal Riset Sains Dan Teknologi), 4(2), 57. https://doi.org/10.30595/jrst.v4i2.6020

Ulum, M, Akbar, M. A., Arif, M., & ... (2022). Perbandingan Aplikasi Rotor Tunggal dan Ganda terhadap Performa Turbin Air Tipe Propeller pada Saluran air Debit Rendah. Prosiding SENASTITAN …, 429–435. http://ejurnal.itats.ac.id/senastitan/article/view/2765%0Ahttp://ejurnal.itats.ac.id/senastitan/article/download/2765/2177

Ulum, Miftahul. (2018). Studi Experimental Energi Bangkitan Pembangkit Listrik Tenaga Gelombang Laut Model Pelampung. IPTEK, 22, 29 – 36. https://doi.org/https://dx.doi.org/10.31284%0b/j.iptek.2018.v22i1.231

Ulum, Miftahul, Noerpamoengkas, A., Arifin, A. A., & Firmansyah, H. D. (2021). Studi Eksperimental Pengaruh Kecepatan Engkol dan Variasi Diameter Disk terhadap Amplitudo, Frekuensi dan Daya pada Mekanisme Pembangkit Gelombang. Journal of Mechanical Engineering, Science, and Innovation, 1(1). https://doi.org/10.31284/J.JMESI.2021.V1I1.1761

Zhang, D., Chen, Z., Liu, X., Sun, J., Yu, H., Zeng, W., Ying, Y., Sun, Y., Cui, L., Yang, S., Qian, P., & Si, Y. (2022). A coupled numerical framework for hybrid floating offshore wind turbine and oscillating water column wave energy converters. Energy Conversion and Management, 267. https://doi.org/10.1016/j.enconman.2022.115933

DOI

https://doi.org/10.21107/rekayasa.v16i3.19000

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Miftahul Ulum

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.