Analisis Tekno-Ekonomi Produksi Gula Reduksi dari Biomassa Ampas Tebu Melalui Hidrolisis Air Subkritis

Maktum Muharja, Siska Nuri Fadilah, Nur Fadhilah, Rizki Fitria Darmayanti, Arief Widjaja, Achri Isnan Khamil

Abstract

Subcritical water hydrolysis of bagasse requires energy to convert lignocellulosic biomass into fermentation-ready sugars. Bagasse biomass has the potential to be used as raw material for the production of reducing sugar. This study evaluates the effectiveness of the hydrolysis process using an oven and autoclave through economic and energy analysis. The variables used were hydrolysis time of 20-60 minutes, oven temperature of 110-170°C, and autoclave temperature of 120-130°C. Reduced sugar concentration was obtained from analysis using the DNS (dinitro salicylic acid) method. The results of the analysis show that time and temperature have a significant effect on the yield of reducing sugar. The highest reduced sugar concentration from subcritical water hydrolysis using an oven was 27.4 g/L at 170°C operating conditions for 60 minutes with a total cost of Rp 351,744 and energy requirement of 480 W.h. In hydrolysis using an autoclave, it was obtained at 14.7 g/L at 125°C for 40 minutes with a total cost of IDR 923,079 and energy requirements of 1,936.67. Hydrolysis using an oven is more recommended than autoclaving because it is economical and has lower energy consumption.

Keywords

subcritical water, sugarcane, sugar reduction, energy

References

Abaide, E. R., Mortari, S. R., Ugalde, G., Valério, A., Amorim, S. M., Di Luccio, M., de FPM Moreira, R., Kuhn, R. C., Priamo, W. L., & Tres, M. V. (2019). Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production, 209, 386–397. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.10.259

Abaide, E. R., Ugalde, G., Di Luccio, M., Moreira, R. de F. P. M., Tres, M. V, Zabot, G. L., & Mazutti, M. A. (2019). Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresource Technology, 272, 510–520. https://doi.org/https://doi.org/10.1016/j.biortech.2018.10.075

Amborowati, C., Adriani, U., Aditya, I. L., Feviasari, H., Hastin, T. K., Adhiksana, A., Prodi, M., Industri, T. K., Kimia, T., Samarinda, P. N., Pengajar, S., & Kimia, J. T. (2016). Pengaruh Waktu Dan Temperatur Hidrolisis Dalam Proses Sintesis Furfural Dari Sekam Padi Dengan Menggunakan Metode Hidrolisis Dan Dehidrasi. Journal of Research and Technology, 2(2), 2460–5972.

Ampese, L. C., Buller, L. S., Myers, J., Timko, M. T., Martins, G., & Forster-Carneiro, T. (2021). Valorization of Macaúba husks from biodiesel production using subcritical water hydrolysis pretreatment followed by anaerobic digestion. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105656

Bambang Trisakti, Yustina br Silitonga, & Irvan. (2015). Pembuatan Bioetanol Dari Tepung Ampas Tebu Melalui Proses Hidrolisis Termal Dan Fermentasi Serta Recycle Vinasse (Pengaruh Konsentrasi Tepung Ampas Tebu, Suhu Dan Waktu Hidrolisis). Jurnal Teknik Kimia USU, 4(3), 17–22. https://doi.org/10.32734/jtk.v4i3.1476

Batista, G., Souza, R. B. A., Pratto, B., dos Santos-Rocha, M. S. R., & Cruz, A. J. G. (2019). Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 275(November 2018), 321–327. https://doi.org/10.1016/j.biortech.2018.12.073

Boedoyo, M. S. (2014). Prospek Pemanfaatan Bioethanol Sebagai Pengganti BBM di Indonesia. Prosiding Peluncuran Buku Outlook Energi Indonesia 2014 & Seminar Bersama BPPT Dan BKK-PII, September 2014, 55–63.

Cho, Y. J., Haq, M., Park, J. S., Lee, H. J., & Chun, B. S. (2019). Physicochemical and biofunctional properties of shrimp (Penaeus japonicus) hydrolysates obtained from hot-compressed water treatment. Journal of Supercritical Fluids, 147(November), 322–328. https://doi.org/10.1016/j.supflu.2018.11.021

Cocero, M. J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C. M., & Pazo-Cepeda, M. V. (2018). Understanding biomass fractionation in subcritical & supercritical water. The Journal of Supercritical Fluids, 133, 550–565. https://doi.org/https://doi.org/10.1016/j.supflu.2017.08.012

Darmayanti, R., Amini, H. W., Rizkiana, M. F., Setiawan, F. A., Palupi, B., Rahmawati, I., Susanti, A., & Fachri, B. A. (2019). Lignocellulosic material from main Indonesian plantation commodity as the feedstock for fermentable sugar in biofuel production. ARPN Journal of Engineering and Applied Sciences, 14(20), 3524–3534.

Debiagi, F., Madeira, T. B., Nixdorf, S. L., & Mali, S. (2020). Pretreatment efficiency using autoclave high-pressure steam and ultrasonication in sugar production from liquid hydrolysates and access to the residual solid fractions of wheat bran and oat hulls. Applied Biochemistry and Biotechnology, 190(1), 166–181. https://doi.org/https://doi.org/10.1007/s12010-019-03092-0

Djali, M., Kayaputri, I. L., Kurniati, D., Sukarminah, E., Mudjenan, I. M. H., & Utama, G. L. (2021). Degradation of Lignocelluloses Cocoa Shell (Theobroma cacao L.) by Various Types of Mould Treatments. Journal of Food Quality, 2021, 6127029. https://doi.org/10.1155/2021/6127029

Fadilah, S. N., Musyafa, R., Putri, L. N., Syahril, D., Khamil, A. I., & Muharja, M. (2023). Pengaruh Penambahan Chemical Agent Terhadap Angka Gula Reduksi Nira Perahan Pertama (NPP). Rekayasa; Vol 16, No 1: April 2023DO - 10.21107/rekayasa.v16i1.17200 . https://journal.trunojoyo.ac.id/rekayasa/article/view/17200

Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18(6), 2069–2094. https://doi.org/10.1007/s10311-020-01059-w

Feng, R., Li, Q., Zaidi, A. A., Peng, H., & Shi, Y. (2021). Effect of autoclave pretreatment on biogas production through anaerobic digestion of green algae. Periodica Polytechnica Chemical Engineering, 65(4), 483–492. https://doi.org/10.3311/PPch.18064

Gautama, E., & Karima, A. (2017). PRODUKSI GULA REDUKSI DARI SABUT KELAPA MENGGUNAKAN KOMBINASI TEKNOLOGI AIR SUBKRITIS (DENGAN GAS PENEKAN N2) DAN HIDROLISIS ENZIMATIK. Institut Teknologi Sepuluh November.

Isnan Khamil, A., Saputra Widarianto, E., Zulham Valensyah, A., Muharja, M., Fitria Darmayanti, R., Umami, R., Shinta Mamnukha, K., & Zikrillah, M. (2023). Machine Learning Approach to Design of Biodiesel Production Extraction Equipment from Tamanu Seed Oil. National Multidisciplinary Sciences , 2(3 SE - Articles), 146–152. https://doi.org/10.32528/nms.v2i3.278

Jiang, L., Zheng, A., Zhao, Z., He, F., Li, H., & Liu, W. (2015). Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose. Bioresource Technology, 182, 364–367. https://doi.org/10.1016/j.biortech.2015.01.032

Khamil, A. I., Valensyah, A. Z., Muharja, M., Waji, D. I. S., Fitria, N. L. I., Pramudya, A. N., Shelli, P., Adrian, F., Zahiyah, Z. A., Mahendra, M. D., Syah, M. Z., Darmayanti, R. F., Mumtazah, Z., & Zikrillah, M. (2023). Recycle Home: Inovasi Pemanfaatan Sampah Organik menjadi Biogas Terintegrasi Aplikasi Mobile Recycle App sebagai Upaya Peningkatan Kesejahteraan Masyarakat Sekitar TPA Pakusari, Kabupaten Jember. Sewagati, 7(4 SE -), 602–613. https://doi.org/10.12962/j26139960.v7i4.563

Ko, J. K., Um, Y., & Lee, S. M. (2016). Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress. Bioresource Technology, 222, 422–430. https://doi.org/10.1016/j.biortech.2016.09.130

Kumar, M., Oyedun, O., Adetoyese, & Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81(March), 1742–1770. https://doi.org/10.1016/j.rser.2017.05.270

Lachos-Perez, D., Baseggio, A. M., Torres-Mayanga, P. C., Ávila, P. F., Tompsett, G. A., Marostica, M., Goldbeck, R., Timko, M. T., Rostagno, M., Martinez, J., & Forster-Carneiro, T. (2020). Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. The Journal of Supercritical Fluids, 160, 104789. https://doi.org/https://doi.org/10.1016/j.supflu.2020.104789

Lachos-Perez, D., Martinez-Jimenez, F., Rezende, C. A., Tompsett, G., Timko, M., & Forster-Carneiro, T. (2016). Subcritical water hydrolysis of sugarcane bagasse: An approach on solid residues characterization. In Journal of Supercritical Fluids (Vol. 108). Elsevier B.V. https://doi.org/10.1016/j.supflu.2015.10.019

Lachos-Perez, D., Tompsett, G. A., Guerra, P., Timko, M. T., Rostagno, M. A., Martínez, J., & Forster-Carneiro, T. (2017). Sugars and char formation on subcritical water hydrolysis of sugarcane straw. Bioresource Technology, 243, 1069–1077. https://doi.org/10.1016/j.biortech.2017.07.080

Lin, R., Cheng, J., Ding, L., Song, W., Qi, F., Zhou, J., & Cen, K. (2015). Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis. Bioresource Technology, 186, 8–14. https://doi.org/10.1016/j.biortech.2015.03.047

Luft, L., Confortin, T. C., Todero, I., Ugalde, G., Zabot, G. L., & Mazutti, M. A. (2018). Transformation of residual starch from brewer’s spent grain into fermentable sugars using supercritical technology. Journal of Supercritical Fluids, 140(April), 85–90. https://doi.org/10.1016/j.supflu.2018.06.006

Maharani, D. M., & Rosyidin, K. (2018). Efek Pretreatment Microwave-NaOH Pada Tepung Gedebog Pisang Kepok terhadap Yield Selulosa. Agritech, 38(2), 133. https://doi.org/10.22146/agritech.16657

Manzanares, P., Ballesteros, I., Negro, M. J., González, A., Oliva, J. M., & Ballesteros, M. (2020). Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renewable Energy, 145, 1235–1245. https://doi.org/https://doi.org/10.1016/j.renene.2019.06.120

Muharja, M., Albana, I., Zuhdan, J., Bachtiar, A., & Widjaja, A. (2019). Reducing Sugar Production in Subcritical Water and Enzymatic Hydrolysis using Plackett- Burman Design and Response Surface Methodology. 8(2).

Muharja, M., Darmayanti, R. F., Khamil, A. I., Prastika, A., Rizalluddin, M., Fadilah, S. N., & Sari, D. A. D. (2023). Evaluation Of Dehydration Performance Of Belitung Taro (Xanthosoma Sagittifolium) Using Tray Dryer. IPTEK The Journal for Technology and Science; Vol 34, No 1 (2023): On Progress. https://iptek.its.ac.id/index.php/jts/article/view/14878

Muharja, M., Darmayanti, R. F., Palupi, B., Rahmawati, I., Fachri, B. A., Setiawan, F. A., Amini, H. W., Rizkiana, M. F., Rahmawati, A., Susanti, A., & Putri, D. K. Y. (2021). Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 31–43. https://doi.org/10.9767/BCREC.16.1.8872.31-43

Muharja, M., Fadhilah, N., Darmayanti, R. F., Sangian, H. F., Nurtono, T., & Widjaja, A. (2020). Effect of Severity Factor on the Subcritical Water and Enzymatic Hydrolysis of Coconut Husk for Reducing Sugar Production. Bulletin of Chemical Reaction Engineering & Catalysis; 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020)DO - 10.9767/bcrec.15.3.8870.786-797 . https://ejournal2.undip.ac.id/index.php/bcrec/article/view/8870

Muharja, M., Fadilah, S. N., Khamil, A. I., & Darmayanti, R. F. (2023). Effect of Immersion Concentration in Salt Solution , Drying Time and Air Velocity on Drying Wet Noodles Using a Tray Dryer and Solar Assistance. 7(1), 9–16.

Muharja, M., Junianti, F., Nurtono, T., & Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840(1), 30004. https://doi.org/10.1063/1.4982264

Muharja, M., Junianti, F., Ranggina, D., Nurtono, T., & Widjaja, A. (2018). An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology, 249, 268–275. https://doi.org/https://doi.org/10.1016/j.biortech.2017.10.024

Muharja, M., Umam, D. K., Pertiwi, D., Zuhdan, J., Nurtono, T., & Widjaja, A. (2019). Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology, 274, 89–96. https://doi.org/https://doi.org/10.1016/j.biortech.2018.11.074

Muharja, M., Widjaja, A., Darmayanti, R. F., Airlangga, B., Anugraha, R. P., Fauziyah, M., Wijanarto, E., Sholehuddin, M., & Khamil, A. I. (2023). Heat Exchanger Network Analysis of The Power Plant Industry Using Aspen Energy Analyzer Software. ASEAN JOURNAL OF CHEMICAL ENGINEERING, 23(1), 14–27. https://doi.org/10.22146/ajche.72261

Muharja, M., Widjaja, A., Darmayanti, R. F., & Fadhilah, N. (2022). Subcritical Water Process for Reducing Sugar Production from Biomass : Optimization and Kinetics. 17(4), 839–849. https://doi.org/10.9767/bcrec.17.4.16527.839-849

Nanda, S., & Berruti, F. (2021a). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19(2), 1433–1456. https://doi.org/10.1007/s10311-020-01100-y

Nanda, S., & Berruti, F. (2021b). Thermochemical conversion of plastic waste to fuels: a review. Environmental Chemistry Letters, 19(1), 123–148. https://doi.org/10.1007/s10311-020-01094-7

Oliveira, T. C. G., Hanlon, K. E., Interlandi, M. A., Torres-Mayanga, P. C., Silvello, M. A. C., Lachos-Perez, D., Timko, M. T., Rostagno, M. A., Goldbeck, R., & Forster-Carneiro, T. (2020). Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol. The Journal of Supercritical Fluids, 164, 104916. https://doi.org/https://doi.org/10.1016/j.supflu.2020.104916

Rahardjo, A. H., Azmi, R. M., Muharja, M., Aparamarta, H. W., & Widjaja, A. (2021). Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review. IOP Conference Series: Materials Science and Engineering, 1053(1), 12097. https://doi.org/10.1088/1757-899X/1053/1/012097

Sarker, T. R., Pattnaik, F., Nanda, S., Dalai, A. K., Meda, V., & Naik, S. (2021). Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 284(March), 131372. https://doi.org/10.1016/j.chemosphere.2021.131372

Setiati, R., Wahyuningrum, D., Siregar, S., & Marhaendrajana, T. (2016). Optimasi Pemisahan Lignin Ampas Tebu Dengan Menggunakan Natrium Hidroksida. ETHOS (Jurnal Penelitian Dan Pengabdian), June, 257. https://doi.org/10.29313/ethos.v0i0.1970

Sganzerla, W. G., Zabot, G. L., Torres-Mayanga, P. C., Buller, L. S., Mussatto, S. I., & Forster-Carneiro, T. (2021). Techno-economic assessment of subcritical water hydrolysis process for sugars production from brewer’s spent grains. Industrial Crops and Products, 171, 113836. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113836

Sondhi, S., Kaur, P. S., & Kaur, M. (2020). Techno-economic analysis of bioethanol production from microwave pretreated kitchen waste. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03362-1

Zhang, X., Zhang, W., Lei, F., Yang, S., & Jiang, J. (2020). Coproduction of xylooligosaccharides and fermentable sugars from sugarcane bagasse by seawater hydrothermal pretreatment. Bioresource Technology, 309, 123385. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123385

DOI

https://doi.org/10.21107/rekayasa.v16i2.17243

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Maktum Muharja, Siska Nuri Fadilah, Nur Fadhilah, Rizki Fitria Darmayanti, Arief Widjaja

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.