Bakteri Bacillus Sebagai Agen Kontrol Hayati dan Biostimulan Tanaman

Arkan Setiaji, Raden Roro Rifka Annisa, Deris Trian Rahmandhias

Abstract

One of the long-term constraints in agricultural productivity is the dependence of farmers on synthetic pesticides. The application of pesticides has a negative impact on ecosystems and human health. Utilization of microorganisms such as bacteria Bacillus as a biological control agent is an alternative to reduce the use of synthetic pesticides. A simpler discussion of the interaction between Bacillus and plants is important to carry out. This article aims to review the mechanism of the role of Bacillus as a biological control agent and growth stimulant in plants. Bacillus is a genus of bacteria that can be used as biological control agents because it is adaptive, capable of forming endospores and tolerant of various environmental conditions. These properties are advantageous in competition with phytopathogens through an antibiosis mechanism in the form of toxin production. Bacillus infection of plants is able to stimulate the emergence of systemic resistance as an initial defense mechanism in plants. Bacillus associated with plants can provide a growth stimulation effect because the metabolites produced are able to trigger the sensitivity of the root system for nutrient absorption and stimulate the regulation of growth regulators such as the synthesis of auxin, gibberellins, and cytokinins. Based on these reviews, the use of based biological agents and biostimulants Bacillus is expected to be able to support global efforts to achieve sustainable development targets, especially in the agricultural sector

Keywords

biological control agent, bacillus, biostimulant, pathogen, pesticide

References

Aktuganov, G. E., Melentiev, A. I., & Varlamov, V. P. (2019). Biotechnological aspects of the enzymatic preparation of bioactive chitooligosaccharides. Applied Biochemistry and Microbiology, 55(4), 323-343. https://doi.org/10.1134/S0003683819040021

Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Grover, A., & Rawat, S. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212, 29-37. https://doi.org/10.1016/j.micres.2018.04.008

Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307-319. https://doi.org/10.1104/pp.103.028712

Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In Bacteria in agrobiology: Plant growth responses (pp. 41-76). Berlin, GER: Springer

Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In Bacteria in agrobiology: disease management (pp. 15-47). Berlin, GER: Springer.

Bu, Y., Takano, T., & Liu, S. (2019). The role of ammonium transporter (AMT) against salt stress in plants. Plant Signaling & Behavior, 14(8), 1625696. https://doi.org/10.1080/15592324.2019.1625696

Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M.N., & Zoppini, A. (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58, 216-234. https://doi.org/10.1016/j.soilbio.2012.11.009

Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology, 10, 302. https://doi.org/10.3389/fmicb.2019.00302

Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987-1998. https://doi.org/10.1098/rstb.2010.0390

Chattopadhyay, P., & Banerjee, G. (2018). Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech, 8(4), 1-12. https://doi.org/10.1007/s13205-018-1223-1

Chen, H., Wang, L., Su, C. X., Gong, G. H., Wang, P., & Yu, Z. L. (2008). Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Letters in Applied Microbiology, 47(3), 180-186. https://doi.org/10.1111/j.1472-765X.2008.02412.x

Chen, H., Xiao, X., Wang, J., Wu, L., Zheng, Z., & Yu, Z. (2008). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 30(5), 919-923. https://doi.org/10.1007/s10529-007-9626-9

Chen, Y. Y., Chen, P. C., & Tsay, T. T. (2016). The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biological Control, 98, 34-42. https://doi.org/10.1016/j.biocontrol.2016.02.011

Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493-513. https://doi.org/10.1016/j.micres.2008.08.007

Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in Microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.00780

Edison, L. K., Shiburaj, S., & Pradeep, N. S. (2018). Microbial beta glucanase in agriculture. In Advances in Microbial Biotechnology (pp. 53-72). Oakville, CA: Apple Academic Press

Fabre, F., Rousseau, E., Mailleret, L., & Moury, B. (2012). Durable strategies to deploy plant resistance in agricultural landscapes. New Phytologist, 193(4), 1064-1075. https://doi.org/10.1111/j.1469-8137.2011.04019.x

Ferniah, R. S., Pujiyanto, S., Purwantisari, S., & Supriyadi, S. (2012). Interaksi kapang patogen Fusarium oxysporum dengan bakteri kitinolitik rizosfer tanaman jahe dan pisang. Jurnal Natur Indonesia, 14(1), 56-60. http://dx.doi.org/10.31258/jnat.14.1.56-60

Fravel, D.R. (2005). Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol., 43: 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924

Gao, Q. M., Zhu, S., Kachroo, P., & Kachroo, A. (2015). Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 6, 228. https://doi.org/10.3389/fpls.2015.00228

Gingichashvili, S., Duanis-Assaf, D., Shemesh, M., Featherstone, J. D., Feuerstein, O., & Steinberg, D. (2019). The adaptive morphology of Bacillus subtilis biofilms: a defense mechanism against bacterial starvation. Microorganisms, 8(1), 62. https://doi.org/10.3390/microorganisms8010062

Hammami, I., Rhouma, A., Jaouadi, B., Rebai, A., & Nesme, X. (2009). Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Letters in Applied Microbiology, 48(2), 253-260. https://doi.org/10.1111/j.1472-765X.2008.02524.x

Höfte, H., & Whiteley, H. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53(2), 242-255. https://doi.org/10.1128/mr.53.2.242-255.1989

World Bank. (2022, Sep 30). Agriculture and food. https://www.worldbank.org/en/topic/agriculture/overview

Huang, C. J., Wang, T. K., Chung, S. C., & Chen, C. Y. (2005). Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. BMB Reports, 38(1), 82-88. https://doi.org/10.5483/BMBRep.2005.38.1.082

Hutchison, E. A., Miller, D. A., & Angert, E. R. (2016). Sporulation in bacteria: beyond the standard model. The Bacterial Spore: from Molecules to Systems, 2(5), 87-102. https://doi.org/10.1128/9781555819323.ch4

Jasim, B., Sreelakshmi, K. S., Mathew, J., & Radhakrishnan, E. K. (2016). Surfactin, iturin, and fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microbial Ecology, 72(1), 106-119. https://doi.org/10.1007/s00248-016-0753-5

Junges, E., Toebe, M., Santos, R. F. D., Finger, G., & Muniz, M. F. B. (2013). Effect of priming and seed-coating when associated with Bacillus subtilis in maize seeds. Revista Ciência Agronômica, 44, 520-526. https://doi.org/10.1590/S1806-66902013000300014

Kim, J. S., Lee, J., Lee, C. H., Woo, S. Y., Kang, H., Seo, S. G., & Kim, S. H. (2015). Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. The Plant Pathology Journal, 31(2), 195. https://doi.org/10.5423%2FPPJ.NT.11.2014.0122

Kumar, A., Prakash, A., & Johri, B. N. (2011). Bacillus as PGPR in crop ecosystem. In Bacteria in agrobiology: crop ecosystems (pp. 37-59). Berlin, GER: Springer

Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493-499. https://doi.org/10.1016/j.micres.2012.05.002

Le Roux, V., Dugravot, S., Campan, E., Dubois, F., Vincent, C., & Giordanengo, P. (2014). Wild Solanum resistance to aphids: antixenosis or antibiosis?. Journal of Economic Entomology, 101(2), 584-591. https://doi.org/10.1093/jee/101.2.584

Les, N., Henneberg, L., Nadal, V. G. R., Muller, M., Szemocoviaki, A. G., Carneiro, F. T., & de Souza Jaccoud Filho, D. (2020). Control of Rhizoctonia solani with biological products in the seed treatment in soybean. Brazilian Journal of Development, 6(12), 99919-99935. https://doi.org/10.34117/bjdv6n12-470

Li, Y., Gu, Y., Li, J., Xu, M., Wei, Q., & Wang, Y. (2015). Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology, 6, 883. https://doi.org/10.3389/fmicb.2015.00883

Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V., & Ongena, M. (2012). Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Archives of Microbiology, 194(11), 893-899. https://doi.org/10.1007/s00203-012-0823-0

Manjula, K., & Podile, A. R. (2005). Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Indian Journal of Experimental Biology, 43, 892-896.

Mishra, J., & Arora, N. K. (2018). Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology, 125, 35-45. https://doi.org/10.1016/j.apsoil.2017.12.004

Muszewska, A., Piłsyk, S., Perlińska-Lenart, U., & Kruszewska, J. S. (2017). Diversity of cell wall related proteins in human pathogenic fungi. Journal of Fungi, 4(1), 6. https://doi.org/10.3390/jof4010006

Olson, S. (2015). An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management, 26(5), 203-206. https://doi.org/10.1564/v26_oct_04

Ongena, M., Jacques, P., Touré, Y., Destain, J., Jabrane, A., & Thonart, P. (2005). Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology, 69(1), 29-38. https://doi.org/10.1007/s00253-005-1940-3

Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340

Pradana, A. P., Putri, D., & Munif, A. (2015). Eksplorasi bakteri endofit dari akar tanaman adam hawa dan potensinya sebagai agens hayati dan pemacu pertumbuhan tanaman padi. Jurnal Fitopatologi Indonesia, 11(3), 73-73. https://doi.org/10.14692/jfi.11.3.73

Pretali, L., Bernardo, L., Butterfield, T. S., Trevisan, M., & Lucini, L. (2016). Botanical and biological pesticides elicit a similar induced systemic response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry, 130, 56-63. https://doi.org/10.1016/j.phytochem.2016.04.002

Raaijmakers, J. M., & Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, 403-424. https://doi.org/10.1146/annurev-phyto-081211-172908

Ray, S. K., Macoy, D. M., Kim, W. Y., Lee, S. Y., & Kim, M. G. (2019). Role of RIN4 in regulating PAMP-triggered immunity and effector-triggered immunity: current status and future perspectives. Molecules and Cells, 42(7), 503. https://doi.org/10.14348%2Fmolcells.2019.2433

Ruiz-Herrera, J., & Ortiz-Castellanos, L. (2019). Cell wall glucans of fungi. A review. The Cell Surface, 5, 100022. https://doi.org/10.1016/j.tcsw.2019.100022

Ryu, C. M., Choi, H. K., Lee, C. H., Murphy, J. F., Lee, J. K., & Kloepper, J. W. (2013). Modulation of quorum sensing in acylhomoserine lactone-producing or-degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166. The Plant Pathology Journal, 29(2), 182. https://doi.org/10.5423%2FPPJ.SI.11.2012.0173.R2

Sauka, D. H., & Benintende, G. B. (2008). Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests. Revista Argentina de Microbiología, 40(2), 124-140.PMID: 18705497

Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519-537. https://doi.org/10.1007/s12571-012-0200-5

Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583-1594. https://doi.org/10.1111/jam.14506

Singh, J., & Yadav, A. N. (Eds.). (2020). Natural bioactive products in sustainable agriculture. Springer Nature.

Singh, U. B., Malviya, D., Singh, S., Imran, M., Pathak, N., Alam, M., Rai, J.P., Singh, R.K., Sarma, B.K., Sharma, P.K., & Sharma, A. K. (2016). Compatible salt-tolerant rhizosphere microbe-mediated induction of phenylpropanoid cascade and induced systemic responses against Bipolaris sorokiniana (Sacc.) Shoemaker causing spot blotch disease in wheat (Triticum aestivum L.). Applied Soil Ecology, 108, 300-306. https://doi.org/10.1016/j.apsoil.2016.09.014

Sumi, C. D., Yang, B. W., Yeo, I. C., & Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 61(2), 93-103. https://doi.org/10.1139/cjm-2014-0613

Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Raza, W., Hanif, A., Wu, L., Colman, M.V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171. https://doi.org/10.3389/fmicb.2017.00171

Thakur, M., & Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: a review. International Scholarly Research Notices, 2013. http://dx.doi.org/10.1155/2013/762412

Tijjani, A., Bashir, K. A., Mohammed, I., Muhammad, A., Gambo, A., & Musa, H. (2016). Biopesticides for pests control: A review. Journal of Biopesticides and Agriculture, 3(1), 6-13.

Tiwari, S., Prasad, V., Chauhan, P. S., & Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 1510. https://doi.org/10.3389/fpls.2017.01510

Verma, P., Yadav, A. N., Kumar, V., Singh, D. P., & Saxena, A. K. (2017). Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In Plant-microbe interactions in agro-ecological perspectives (pp. 543-580). Singapore: Springer

Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & Santos-Villalobos, S. D. L. (2018). The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Revista Mexicana de Fitopatología, 36(1), 95-130. https://doi.org/10.18781/r.mex.fit.1706-5

Wang, W., Chen, L. N., Wu, H., Zang, H., Gao, S., Yang, Y., Xie, S., & Gao, X. (2013). Comparative proteomic analysis of rice seedlings in response to inoculation with Bacillus cereus. Letters in Applied Microbiology, 56(3), 208-215. https://doi.org/10.1111/lam.12035

Wang, X., Wang, L., Wang, J., Jin, P., Liu, H., & Zheng, Y. (2014). Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One, 9(11), e112494. https://doi.org/10.1371/journal.pone.0112494

Wenke, K., Kai, M., & Piechulla, B. (2010). Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta, 231(3), 499-506. https://doi.org/10.1007/s00425-009-1076-2

Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V., & Després, C. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports, 1(6), 639-647. https://doi.org/10.1016/j.celrep.2012.05.008

Xu, C., Wang, B. C., Yu, Z., & Sun, M. (2014). Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins, 6(9), 2732-2770. https://doi.org/10.3390/toxins6092732

Yadav, I. C., Devi, N. L., Syed, J. H., Cheng, Z., Li, J., Zhang, G., & Jones, K. C. (2015). Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: A comprehensive review of India. Science of the Total Environment, 511, 123-137. https://doi.org/10.1016/j.scitotenv.2014.12.041

Yeom, J. R., Yoon, S. U., & Kim, C. G. (2017). Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria. Chemosphere, 182, 771-780. https://doi.org/10.1016/j.chemosphere.2017.05.084

Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., & Brodie, E. L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3(4), 470-480. https://doi.org/10.1038/s41564-018-0129-3

DOI

https://doi.org/10.21107/rekayasa.v16i1.17207

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Arkan Setiaji, Raden Roro Rifka Annisa, Deris Trian Rahmandhias

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.