Pembelajaran Mendalam Pengklasifikasi Ekspresi Wajah Manusia dengan Model Arsitektur Xception pada Metode Convolutional Neural Network
Abstract
Deep learning is a neural network that creates innovations that give computer-implanted problem-solving expertise. One of the principles of computer vision is a detection system with a vision framework that can identify things encountered in the same manner as a human vision system. Using an artificial intelligence-based Convolutional Neural Network (CNN) model with deep learning techniques, we present a face emotion identification system. The categorization of facial expressions will be utilized as the basis for a face recognition system trained using CNN. The applications are intended to use the OpenCV, Keras, and TensorFlow libraries as the backend. We were discussing the study on the best use of xception architectural models in facial expression recognition systems. Based on the results of these tests, the study obtained an increased accuracy value in training and data testing on an xception architecture model trained for facial expressions using the FER-2013 dataset, resulting in an accuracy value of 66% as well as the value of each average for precision (76%), recall (65%), and F1 score (63%).
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Alamsyah, D., & Pratama, D. (2020). Implementasi Convolutional Neural Networks (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset. Jurnal Teknologi Informasi, 4(2), 350–355. https://doi.org/10.36294/jurti.v4i2.1714
Carrier, P.-L., & Courville, A. (2013). The Facial Expression Recognition 2013 (FER-2013) Dataset. Retrieved from Wolfram Data Repository website: https://datarepository.wolframcloud.com/resources/FER-2013
Chollet, F. (2016). Xception: Deep Learning with Depthwise Separable Convolutions. CoRR, abs/1610.0. Retrieved from http://arxiv.org/abs/1610.02357
Dargham, J. A., Chekima, A., & Moung, E. G. (2012). Fusing Facial Features for Face Recognition. International Journal of Interactive Multimedia and Artificial Intelligence, 1(5), 54. https://doi.org/10.9781/ijimai.2012.157
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, abs/1512.0, 770–778. IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.90
Henderson, R., & Rothe, R. (2017). Picasso: A Modular Framework for Visualizing the Learning Process of Neural Network Image Classifiers. Journal of Open Research Software, 5(1), 22. https://doi.org/10.5334/jors.178
Jain, V., Lamba, P. S., Singh, B., Namboothiri, N., & Dhall, S. (2019). Facial expression recognition using feature level fusion. Journal of Discrete Mathematical Sciences and Cryptography, 22(2), 337–350. https://doi.org/10.1080/09720529.2019.1582866
Janku, P., Koplik, K., Dulik, T., & Szabo, I. (2016). Comparison of tracking algorithms implemented in OpenCV. MATEC Web of Conferences, 76. https://doi.org/10.1051/matecconf/20167604031
Ko, S. G., Lee, T. H., Yoon, H. Y., Kwon, J. H., & Mather, M. (2011). How Does Context Affect Assessments of Facial Emotion? The Role of Culture and Age. Psychology and Aging, 26(1), 48–59. https://doi.org/10.1037/a0020222
Kurniawan, A. L., Isnanto, R. R., Zahra, A. A., Kunci, K., Wajah, P., Komputer, V., … Euclidean, J. (2015). Perancangan sistem Pengenalan Wajah Menggunakan Metode Ekstraksi Ciri Susunan Tapis Wavelet Gabor 2D Dengan Jarak Euclidean. Transient: Jurnal Ilmiah Teknik Elektro, 4(1), 39–43.
Musa, P., Wibowo, E. P., Musa, S. B., & Baihaqi, I. (2022). Pelican Crossing System for Control a Green Man Light with Predicted Age. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(2), 293–306. https://doi.org/10.30812/matrik.v21i2.1508
Musa, P., Yuliani, N., & Lamsani, M. (2009). Rancang Bangun Pengendali Pintu Automatis Berdasarkan Ciri Wajah Menggunakan Metode Euclidean Distance Dan Fuzzy C-mean. Jurnal Ilmiah Informatika Komputer Universitas Gunadarma, 13(1), 35.
Musa, S. B., & Tjandrasa, H. (2017). Analisis Fitur Sinyal Emosi EEG Berdasarkan Hybrid Decompotion. ENERGY, 7(1), 7–12.
Mustafa, R., Min, Y., & Zhu, D. (2014). Obscenity detection using haar-like features and gentle Adaboost classifier. Scientific World Journal, 2014. https://doi.org/10.1155/2014/753860
Nisbett, R. E., & Miyamoto, Y. (2005). The influence of culture: Holistic versus analytic perception. Trends in Cognitive Sciences, 9(10), 467–473. https://doi.org/10.1016/j.tics.2005.08.004
Ramadhani, A. L., Musa, P., & Wibowo, E. P. (2017). Human face recognition application using PCA and eigenface approach. 2nd International Conference on Informatics and Computing, (ICIC), ICIC 2017, 1–5. https://doi.org/10.1109/IAC.2017.8280652
Righart, R., & de Gelder, B. (2008). Rapid influence of emotional scenes on encoding of facial expressions: An ERP study. Social Cognitive and Affective Neuroscience, 3(3), 270–278. https://doi.org/10.1093/scan/nsn021
Righart, R., & De Gelder, B. (2006). Context influences early perceptual analysis of faces - An electrophysiological study. Cerebral Cortex, 16(9), 1249–1257. https://doi.org/10.1093/cercor/bhj066
Righart, R., & De Gelder, B. (2008). Recognition of facial expressions is influenced by emotional scene gist. Cognitive, Affective and Behavioral Neuroscience, 8(3), 264–272. https://doi.org/10.3758/CABN.8.3.264
Simonyan, K., & Zisserman, A. (2014a). Two-stream convolutional networks for action recognition in videos. Advances in Neural Information Processing Systems.
Simonyan, K., & Zisserman, A. (2014b). Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Representations, ICLR 2015, abs/1409.1. Retrieved from http://arxiv.org/abs/1409.1556
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. A. (2014). Striving for Simplicity: The All Convolutional Net. 3rd International Conference on Learning Representations, ICLR 2015, abs/1412.6. Retrieved from http://arxiv.org/abs/1412.6806
Tang, Y. (2015). Deep Learning using Linear Support Vector Machines. ArXiv:1306.0239.
Vadinský, O. (2018). An Overview of Approaches Evaluating Intelligence of Artificial Systems. Acta Informatica Pragensia, 7(1), 74–103. https://doi.org/10.18267/j.aip.115
Vandana, & Marriwala, N. (2022). Facial Expression Recognition Using Convolutional Neural Network. Lecture Notes in Networks and Systems, 339, 605–617. https://doi.org/10.1007/978-981-16-7018-3_45
Xia, J., Xie, F., Zhang, Y., & Caulfield, C. (2013). Artificial intelligence and data mining: Algorithms and applications. Abstract and Applied Analysis. https://doi.org/10.1155/2013/524720
Xia, X.-L., Xu, C., & Nan, B. (2017). Facial Expression Recognition Based on TensorFlow Platform. ITM Web of Conferences, 12, 01005. https://doi.org/10.1051/itmconf/20171201005
Xie, D., Zhang, L., & Bai, L. (2017). Deep Learning in Visual Computing and Signal Processing. Applied Computational Intelligence and Soft Computing, Vol. 2017. https://doi.org/10.1155/2017/1320780
Zahara, L., Musa, P., Prasetyo Wibowo, E., Karim, I., & Bahri Musa, S. (2020). The Facial Emotion Recognition (FER-2013) Dataset for Prediction System of Micro-Expressions Face Using the Convolutional Neural Network (CNN) Algorithm based Raspberry Pi. 5th International Conference on Informatics and Computing (ICIC), 7. https://doi.org/10.1109/ICIC50835.2020.9288560
Zhang, Y., Balochian, S., Agarwal, P., Bhatnagar, V., & Housheya, O. J. (2014). Artificial intelligence and its applications. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/840491
DOI
https://doi.org/10.21107/rekayasa.v16i1.16974Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Purnawarman Musa, Wahid Khairul Anam, Saiful Bahri Musa, Witari Aryunani, Remi Senjaya, Puji Sularsih
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.